Platelet Activating Factor Antagonist Activity of Ginsenosides

Keun Young Jung,a Dong Seon Kim,b Sei Ryang Oh,b Im Seon Lee,a Jung Joon Lee,a Jong Dae Park,b Shin Il Kim,b and Hyeong-Kyu Lee*a

Natural Product Biosynthesis Research Unit, Korea Research Institute of Bioscience & Biotechnology, Yusong P.O. Box 115, Taejon 305-600 and Korea Ginseng and Tobacco Research Institute, Taejon 305-345, Korea.

Received June 27, 1997; accepted September 26, 1997.

Ginseng saponins and their degradation products have been screened for antagonist activity towards [1H]PAF (platelet activating factor) in washed rabbit platelet receptor binding studies. 20(S)- and 20R-ginsenosides Rg1, protopanaxadiol-type saponins, were found to be relatively potent PAF antagonists (IC50=4.9×10−7M and 9.2×10−5M, respectively).

Key words Panax ginseng; PAF antagonist activity; 20(S)-ginsenoside Rg1; 20R-ginsenoside Rg1.

Platelet-activating factor (PAF), identified as 1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine,1 is a biologically active phospholipid originally described as a fluid-phase mediator released after antigenic challenge of sensitized rabbit basophils.2 PAF is active at nanomolar concentrations and exhibits a myriad of physiological and pathological roles, as a hypotensive, increasing vascular permeability, acute inflammation, asthma, cardiac anaphylaxis, thrombosis, gastrointestinal ulceration, endotoxin shock, allergic skin disease, and transplanted organ rejection.2,3 In order to identify PAF receptor antagonists, we screened many kinds of traditional medicines using a PAF receptor binding assay, and PAF receptor binding antagonist activity was found in two saponins from the roots of Panax ginseng. We now report the effect of ginsenosides on [1H]PAF binding inhibition activity, and this is the first demonstration that ginsenosides have PAF receptor antagonist activity.

MATERIALS AND METHODS

Plant Materials, Isolation and Preparation of Saponins and Degradation Products The red ginseng used was provided by Korea Ginseng and Tobacco Research Institute. Isolation and preparation of saponins and degradation products were as in the previous study.6,8

Preparation of Reagent Solutions and Buffers ACD (acid-citric acid-dextrose) solution was used as an anticoagulant. Bovine serum albumin (BSA) and ginkgolide B were from Sigma Co. (St. Louis, U.S.A.). Tris BSA Buffer (10 mm Tris, 10 mm MgCl2, 30 mm KCl, 1 mm EGTA, 0.1% glucose, 0.25% BSA, pH 7.0) was used for washing platelets, preparing platelet suspensions, dilution of samples and washing filters. Radiolabelled PAF with a specific activity of 142 Ci/mmol and unlabelled PAF were purchased from Amersham (Little Chalfont, U.K.) and Sigma Co., respectively. For the scintillation fluid, Lumagel™-safe was purchased from Lumac LSC B.V. Co. (Olen, Belgium).

Preparation of Samples for PAF Receptor Binding Assay Each sample was dissolved in dimethyl sulfoxide (DMSO), and diluted with buffer (final concentration of DMSO, 0.8%) and 0.8% DMSO in buffer was used as a control.

Preparation of Washed Rabbit Platelet Suspension Five volumes rabbit blood collected by heart puncture was added to 1 volume ACD solution. The blood was centrifuged at 270 g for 10 min, and the platelet-rich plasma (PRP) was carefully removed. PRP was re centrifuged at 1250 g for 10 min, the platelets were then washed by recentrifugation in buffer. The final platelet concentration was adjusted to 2×10^5 cells/ml buffer with a hemacytometer (Brand 717810, Germany).

Inhibition of [1H]PAF Binding to Washed Rabbit Platelets Binding of [1H]PAF to rabbit platelets was carried out according to the methods of Valone9 and Yang10 with some modifications. The reaction mixture consisted of 100 μl platelet suspension, 90 μl [1H]PAF (0.9 nm, 70000 dpm), with or without unlabelled PAF (500-fold radioactive form), and 60 μl sample or control solution. The reaction mixture was incubated at room temperature for 30 min. Free PAF was separated from bound PAF by filtration of the reaction mixture using the MultiScreen™ Filtration System (Millipore Co., U.S.A.). The filters were rapidly washed with ice-cold buffer and then dried and placed into vials containing 3 ml scintillation fluid. Radioactivity was then measured in a liquid scintillation spectrophotometer (Beckman LS6000AT, U.S.A.). The difference between total radioactivity of bound [1H]PAF in the absence and presence of excess unlabeled PAF is defined as the specific binding of the radiolabeled ligand. In a set of experiments, [1H]PAF was incubated with different concentrations of PAF receptor antagonist and the effect of the antagonist on the specific binding was expressed as the percentage inhibition of the control. The IC50 value was defined as the final concentration of the inhibitor required to block 50% of the specific [1H]PAF binding to rabbit platelet receptors. The results of the assay are expressed as the mean of 3 distinct experiments.

RESULTS AND DISCUSSION

The total and specific activities of the PAF receptor binding antagonist activity of ginseng saponins and sapogenin derivatives were assayed. Unfortunately, most of them (ginsenosides Rh1, Rh2, Re, Rg2, Rg3, 20(S)-Rg1, 20(S)-Rg3, 20(R)-Rg1, 20(R)-Rg3, 20(S)-Rh2, 20(R)-Rh2, 20(S)-Rb1, Rb2, 20(R)-panaxadiol, 20(R)-panaxatriol, 20(R)-protopanaxadiol, 20(S)-protopanaxadiol) had no activity (IC50>200 μM), so it was difficult to evaluate any structure activity relationship. Only 20(S)-ginsenoside Rg1, and 20R-ginsenoside Rg1, showed

* To whom correspondence should be addressed.

Table 1. Inhibition of PAF Binding to Washed Rabbit Platelets

<table>
<thead>
<tr>
<th>Compound</th>
<th>Concentration (µM)</th>
<th>Inhibition (%)</th>
<th>IC₅₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>20(S)-Ginsenoside Rg₁</td>
<td>200</td>
<td>84.4</td>
<td>4.9 × 10⁻⁵ M</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>56.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>40.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.5</td>
<td>20.0</td>
<td></td>
</tr>
<tr>
<td>Δ⁵-Ginsenoside Rg₁</td>
<td>160</td>
<td>72.0</td>
<td>9.2 × 10⁻³ M</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>48.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>29.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>24.4</td>
<td></td>
</tr>
<tr>
<td>Ginkgolide B</td>
<td></td>
<td></td>
<td>1.9 × 10⁻⁵ M</td>
</tr>
</tbody>
</table>

PAF receptor binding antagonist activity. The data are listed in Table 1 and, for comparison, the IC₅₀ value of ginkgolide B, a well known potent PAF antagonist from Ginkgo biloba leaves, is also shown. The IC₅₀ value of 20(S)-ginsenoside Rg₁ was 4.9 × 10⁻⁵ M and that of Δ⁵-ginsenoside Rg₁ was 9.2 × 10⁻³ M, less potent than ginkgolide B.

The PAF antagonists from natural products could be classified as terpenes, lignans, and glycosides and related compounds by their skeletons. However, ginsenosides, triterpenoid saponins, are different from other reported PAF antagonists. 20(S)-Ginsenoside Rg₁, and Δ⁵-ginsenoside Rg₁, are thus a new type of PAF antagonist.

Lee et al. reported that ginsenoside Rg₁ had an inhibitory effect on thrombin- and collagen-induced aggregation of washed platelets, which was dose-dependent manner. Park et al. also reported that 20(S)-ginsenoside Rg₁ had the most potent inhibitory activity on multidrug resistance. Breckham et al. suggested that ginseng glycosides had an adaptogenic activity, which increased non-specific resistance against various stimulant caused diseases.

We suggest that 20(S)-ginsenoside Rg₁ and Δ⁵-ginsenoside Rg₁ may be responsible for the antiinflammatory effect of P. ginseng, especially red ginseng, besides the known effects and our findings have potentially important implications for the therapeutic use of these compounds in inflammatory diseases.

REFERENCES