Retrovirus 증식 억제인자의 탐색 (Ⅲ)
Screening for Inhibitors of Reverse Transcriptase (Ⅲ)

연구기관
한국과학기술연구원
부설 유전공학연구소

과학기술처
제 출 문

과학기술처장관 귀하

본 보고서를 생물학적 반응조절물질 (BRM) 생산기술개발의 세부과제 "Retrovirus 증식 억제 인자의 탐색(Ⅲ)" 사업의 최종보고서로 제출합니다.

주관연구기관명: 한국과학기술연구원 유전공학연구소
총괄연구책임자: 정태화(한국과학기술연구원 유전공학연구소 책임연구원)
연구책임자: 이정준(한국과학기술연구원 유전공학연구소 책임연구원)
연구원: 김영호(한국과학기술연구원 유전공학연구소 선임연구원)

이성우(한국과학기술연구원 유전공학연구소 연구원)
김서은(한국과학기술연구원 유전공학연구소 연구원)
류태승(한국과학기술연구원 유전공학연구소 연구원)
김영희(한국과학기술연구원 유전공학연구소 연구원)
요 약 문

I. 제목: Retrovirus 중식억제 인자의 탐색(Ⅲ)

II. 연구개발의 목적과 중요성

미생물과 생약에서의 생체활성물질 탐색은 관련분야인 유전공학, 천연물화학등의 발전과 함께 그 중요성이 더욱 커져 세균감염이나 암 등의 질병치료에 쓰이는 약물과 농업, 축산산업에 쓰이는 수많은 화합물들이 직접 미생물 발효액과 생약으로부터 분리, 정제되어 그대로 이용되거나 화학적으로 변화시킨 유도체로 널리 이용되고 있다. 그러나 항암 및 항바이러스성 항생물질은 그 절대적 필요성과 긴박성, 그리고 개발하려는 노력에 비해 성과도 적고 발전도 느린 분야이다. 바이러스에 기인한 암에 유용한 물질을 screening 하는 데는 바이러스 특유의 life-cycle에 있어서 어떤 단계를 특이적으로 차단하는 약물이 바람직하다. Retrovirus는 DNA를 중간체로 하여 복제하는 RNA virus를 말하는데 복제된 DNA는 숙주세포의 chromosome에 integration되어 provirus로 존재한다. 이 virus DNA가 세포의 성장과 증식에 관여하는 어떤 유전자에 영향을 주어서 DNA의 전사를 증진시키면 암성전환이 유발되는 것으로 생각된다.

AIDS의 원인 바이러스도 retrovirus에 속하는데, 성인 T-cell leukemia의 원인인 HTLV-I이 분리, 동정된 후 AIDS의 원인 바이러스로서 HTLV-Ⅲ/LAV가 분리되었는데, 모두 비슷한 retrovirus로 T-립파구를 표적세포로 한다. 이런 retrovirus의 증식에 필수적인 역전사 효소(reverse transcriptase: RT)의 존재가 1970년대에 보고되었고, 많은 retrovirus의 역전사 효소들은 성질이 유사한 것으로 알려졌다. Retrovirus의 증식을 억제하는 방법은 여러 단계가 고려될 수 있지만 가장 효과적
인 단계는 역전사 효소를 저해하는, 즉 바이러스의 RNA가 DNA로 복제되는 것을 방지하는 초기 단계로 간주되고 있다. 따라서 역전사 효소를 선택적으로 저해하는 물질은 우수한 항바이러스성 화합물로 기대되고 또한 AIDS에 대한 화학요법체로도 사용될 수 있을 것이다. 역전사 효소 저해제에 의해 AIDS 바이러스의 증식을 억제하는 시도로 최초의 예는 HPA-23을 AIDS 환자에 사용한 것인데, 그 후 suramin이 in vitro에서 AIDS 바이러스의 감염과 포적세포 장애효과를 억제하는데 작용하여 AIDS 환자 치료에 사용했다는 보고도 있다. 현재는 substrate analog인 AZT(3’-azido-deoxythymidine)가 가장 유망하며 FDA의 인가를 받았으나 bone marrow의 기능을 위축시키고 T-cell를 포함한 적혈구 생산을 떼어내는 등의 심각한 부작용이 있으며 반감기가 짧고 심한 두통을 동반한다고 한다.

역전사 효소를 저해하는 기존의 항생물질로는 adriamycin계와 ansamycin계의 여러 종 그리고 streptonigrin 등이 보고되었는데 RNA polymerase와 DNA polymerase를 모두 저해하여 선택성이 없다.

최근에 AMV(avian myeloblastosis virus)의 역전사 효소를 model로 screening된 revistin, retrostatin, limocrocin, sakyomycin 그리고 다른 방법에 의존했지만 이 효소를 저해할 것으로 기대되는 oxetanocin 등이 보고되었다. 이중 sakyomycin과 oxetanocin은 AIDS virus의 증식을 억제하는 효과가 있음이 보고되었 다.

여러종의 바이러스로부터 분리된 RT는 서로 성질이 유사한 것으로 알려져 있어, 본 연구에서는 AMV RT를 첫 단계의 모델 효소로 사용하여 RT 저해물질을 screening하고 RT에 대하여 활성이 있는 화합물에 대해서는 HIV의 nef gene를 CAT(chloramphenicol acetyl transferase)로 치환한 SVCAT virus의 in vitro 세포 배양에서 증식 억제효성을 검색하여 최근 급속한 속도로 감염되고 있는 AIDS와 그와 관련된 질병을 치료하는 생리활성물질을 개발하고자 하였다.
아울러 암세포의 형태학적 변화를 유도시키는 화합물은 암세포의 성장이나 분화. 신호전달체계에 있어서 중요한 역할을 할 것으로 기대되어 인체유암세포주인 MCF-7 cell을 이용하여 형태학적 변화를 유도하는 화합물을 찾아고자 하였다.

Ⅲ. 연구의 내용과 범위

1. 토양 방산균의 분리 배양 및 시료의 제조

전국 각지에서 채집한 토양시료 일정량을 별균증류수로 10⁻¹, 10⁻², 10⁻³, 10⁻⁴으로 회석한 후 arginine-glycerol-salt agar, HV agar, Bennet medium에 0.1ml씩 도말하여 28℃에서 72시간동안 배양하여 나타난 single colony를 Bennet medium에 옮겨서 colony의 모양, 가용성 색소의 생성유무, spore의 형성유무 및 형태 등을 관찰하여 각기 다르다고 판단되는 균주만을 선별하여, fermentation 배지에서 7일간 액체배양하였다. 또다른 방법으로는 생리식염수에 현탁한 토양시료 일정량을 augmentin 과 nystatin을 포함한 OMYM medium에 도말하여 각기 다르다고 생각되는 균주를 선별하여 MCLM-1과 MCLM-2 배지에서 6일간 액체배양하였다. 이상과 같은 방법으로 배양한 배양액 5ml를 취하여 동결건조한 후 CH₂Cl₂와 MeOH 1:1의 혼합용매로 추출하고 500μl로 농축하여 이를 시료로 하였다.

2. 생약시료의 제조

1차년도에서 reverse transcriptase에 저해활성을 보였던 생약중 대다수의 활성성분으로 추정되는 58종의 polyphenol화합물을 20mg/ml의 농도가 되도록 DMSO에 녹이고, 최종농도가 80μg/ml이 되도록 증류수로 회석하여 사용하였다.

3. Reverse transcriptase 저해활성
방선균의 배양액과 생약 성분들에 대하여 AMV(avian myeloblastosis virus)의 reverse transcriptase를 이용하여 각 화합물의 inhibition정도를 측정하였으며, template - primer로는 poly(rA)-oligo(dT)를 사용하였다. Reverse transcriptase에 높은 저해성을 보인 성분들에 대하여는 4단계로 단계별 희석하여 각 성분에 대한 IC50를 측정하였다.

4. Syncytia forming assay

Reverse transcriptase의 저해작용과 HIV virus에 대한 직접적인 저해작용을 관찰하기 위해서 HIV의 nef gene를 CAT로 치환한 SVCAT virus를 이용하여 in vitro에서 syncytia forming assay를 실시하였다.

5. 인체유암세포주 MCF-7 cell에 대한 형태학적 변화 유도활성 측정

방선균 배양액과 생약 시료를 3단계로 단계별 희석하여 MCF-7 cell의 형태학적 변화 유도활성을 관찰하였다. MCF-7 cell은 10% fetal bovine serum이 함유된 RPMI 1640 배지에서 배양하였으며 시료 처리 후 48시간 만에 현미경 하에서 형태변화 유도를 관찰하였다.

IV. 연구결과 및 활용에 대한 건의

1. 방선균 배양액의 RT 저해활성

Fermentation 배지에서 배양한 300종의 방선균 배양액에 대해서 reverse transcriptase inhibition assay를 실시한 결과 35종이 60% 이상의 저지활성을 나타내었으며, 그 중 높은 활성을 나타낸 Streptomyces sp. AZ01에 대하여 활성성분의 분리를 행하였다.
2. *Streptomycyes* sp. AZ01의 배양 및 활성성분의 분리

Streptomycyes sp. AZ01을 MCLM-1배지를 이용해서 28°C에서 6일간 배양하여 얻은 6L의 배양액을 8,000 rpm에서 원심분리하여 cell debris와 supernatant로 나눈 다음, cell debris의 EtOAc fraction을 silica gel column chromatography 및 prep.HPLC를 이용하여 정제한 결과 reverse transcriptase에 저해 활성을 나타낸 compound I(5mg) 및 MCF-7 cell의 형태변화를 유도하는 compound II(3mg), compound III(2mg)을 얻었다.

3. Compound I, II, III의 구조 동정

Streptomycyes sp. AZ01에서 얻은 compound I, II, III을 UV, MS, IR, NMR 등의 기기분석을 이용하여 분석한 결과, compound I은 isoflavonoid의 일종인 genistein으로 추정되며, compound II와 compound III은 각각 분자량 451과 465를 갖는 teleocidin B와 olivoretin A로 동정할 수 있었다.

4. Polyphenol 화합물의 활성측정

1) Reverse transcriptase 저해활성

주로 대극과(Euphorbiaceae)에서 분리된 58종의 polyphenol화합물을 이용하여 reverse transcriptase 저해활성을 관찰한 결과 80μg/ml의 농도에서 60% 이상의 저해활성을 보인 화합물은 36종이었다. 이들 화합물 중 구조적으로 ellagitannin류에 속하는 화합물이 대체적으로 높은 활성을 보였으며, 이들에 대하여는 다시 최종 농도가 80, 20, 5, 1.25μg/ml이 되도록 serial dilution하여 각 화합물의 IC50를 구한 결과 punicafolin은 1.4μg/ml, euphorscopin과 pedunculagin은 2.4μg/ml, excoecarianin은 2.8μg/ml 등의 높은 RT저해활성을 나타내었다.
2) Syncytia forming assay

RT에 대하여 높은저해성을 보이는 화합물에 대하여 SVCAT virus에 대한 직접적인 저해성을 측정하였다. 그 결과 elaeocarpusin, euphorscopin 등 몇 몇 화합물이 2.5 - 5.0μg/ml의 농도에서 syncytia의 형성을 저해하였으나, 거의 동일한 농도에서 세포독성을 나타내었으며 control로 사용한 AZT보다는 현저하게 낮은 활성을 나타냈다.

3) 인체유암세포주 MCF-7 cell에 대한 형태변화 유도활성

Polyphenol 화합물을 최종농도가 50μg/ml, 5μg/ml, 0.5μg/ml이 되도록 하석하여 인체유암세포주에 대한 형태변화 유도를 관찰한 결과 excoecarianin과 euphorscopin이 50μg/ml의 농도에서 MCF-7 cell의 형태변화를 유도하였다.
Summary

Nowadays the prevention and cure for acquired immune deficiency syndrome (AIDS) has been the subject of the greatest scientific search in history. Despite the intense effort to develop a vaccine and to discover a cure for this almost fatal disease which destroys the victim's immune system and open the door for serious infection, no cure has been found. The inhibitor of reverse transcriptase, whose activity is characteristic of retrovirus such as AIDS-causing virus HTLV-III/LAV, might be a ideal candidate for development of chemotherapeutic agents against this disease.

This study has been initiated in the hope of finding specific inhibitors against reverse transcriptase from microbial cultured broth and oriental herbs. Reverse transcriptase originated AMV instead of HIV has been used.

Almost five hundreds Streptomyces sp. have been isolated from Bennet and OMYM agar plate containing augmentin and nystatin. Among these strains, we selected one strain, Streptomyces sp. AZ01, which showed strong inhibitory activity of reverse transcriptase and changed the morphology of MCF-7 cell. This strain was cultured in the MCLM-1 medium using 1.5 liter fermentor 4 times. The entire cultured broth was combined and cell debri was collected by centrifugation and fractionated with hexane, ethylacetate, and n-buthanol successively. The ethylacetate fraction, which showed the strongest activities, was chromatographed with silica gel column, and preparative HPLC by activity guided fractionation. The compound I (genistein derivative),
compound II (teleocidin B) and compound III (olivoretin A) were isolated and their structures were elucidated by spectroscopic methods such as UV, IR, NMR, and MS spectrometry. The IC₅₀ of reverse transcriptase of compound I and II was 145.9 µg/ml and 188.3 µg/ml, respectively. Compound II and III rapidly changed the morphology of MCF-7 cell line.

From the previous results of this research, we knew that a lot of herbal drugs showed the strong activities of reverse transcriptase and their activities were due to the polyphenol compounds. So we tested 58 polyphenol compounds originated from Euphorbiaceae against the inhibitory activities of reverse transcriptase, syncytia forming inhibitory activities and morphology changing activities of MCF-7 cell line. Most of ellagitannin group showed strong inhibitory activities of reverse transcriptase, but they didn't show good activities in the syncytia forming assay. Excoecaraine and euphorscopin changed the morphology of MCF-7 cell at the concentration of 50 µg/ml.

Continuous efforts for screening with the combination of syncytia forming assay, reverse transcriptase inhibition assay and HIV-specific protease inhibition assay could lead to discovery of antiviral drugs from natural products.
Chapter 1. Introduction... 15

Chapter 2. Materials and Methods... 21

1. Materials, Instruments and Media....................................... 21
 (1) Materials and Instruments... 21
 (2) Media... 22

2. Isolation and culture of Streptomyces, preparation of test
 solutions... 25

3. Preparation of test solutions of medicinal herbs.................. 25

4. Reverse transcriptase inhibition assay.............................. 25

5. Syncytia forming assay.. 32

6. Morphology change of MCF-7 cell..................................... 32

7. Isolation and purification of active substances from
 Streptomyces sp. AZ01... 32

Chapter 3. Results and Discussion... 35

1. Biological activity and structure of the metabolites from
 Streptomyces sp. AZ01... 35
 (1) Reverse transcriptase inhibitory activities.......................... 35
 (2) Morphology change of MCF-7 cell................................... 36
 (3) Structure elucidation of compound I................................ 37
(4) Structure elucidation of compound II 40
(5) Structure elucidation of compound III 42

2. Biological activities of medicinal herbs 44
 (1) Reverse transcriptase inhibitory activities 44
 (2) Syncytia forming assay 46
 (3) Morphology change of MCF-7 cell 46

Chapter 4. Conclusions ... 47

References .. 49
목차

제1 장 서론 .. 15

제2 장 실험재료와 방법 .. 21
1. 시약, 기기 및 배지 .. 21
 (1) 시약 및 기기 .. 21
 (2) 배지 ... 22
2. 방산균의 분리와 배양, 시료의 제조 .. 25
3. 생약시료의 제조 .. 25
4. Reverse transcriptase inhibition assay 25
5. Syncytia forming assay ... 32
6. MCF-7 cell에 대한 형태변화 유도활성 측정 32
7. Streptomyces sp. AZ01로부터 활성성분의 분리와 정제 32

제3 장 결과와 고찰 .. 35
1. Streptomyces sp. AZ01의 활성과 분리정제 및 구조동정 35
 (1) Reverse transcriptase 저해활성 35
 (2) MCF-7 cell의 형태변화 유도활성 36
 (3) Compound I의 구조 동정 ... 37
 (4) Compound II의 구조 동정 .. 40
 (5) Compound III의 구조 동정 ... 42
2. 생약시료의 활성측정 ... 44
(1) Reverse transcriptase 저해 활성44
(2) Syncytia forming assay46
(3) MCF-7 cell에 대한 형태변화 유도활성46

제 4 장 결론 및 건의사항47

참 고 문헌 ...49
제 1 장 서 론

Retrovirus는 P. Rous가 1911년 닭의 육종세포로부터 처음 분리하였고 다른 동물들에서도 확인되었다. 그 중에서 1950년대 L. Gross가 백혈병을 앓는 쥐로부터 포유동물의 retrovirus를 최초로 분리하였으며, murine leukemia와 관련되었음을 제시하였다. 숙주의 악성질환을 야기하는 retrovirus로는 Gibbon ape leukemia (GaLV)와 악성 및 비악성 질환을 일으키는 feline leukemia virus (FeLV)가 있으며 실제로 retrovirus에 의한 leukemia에 있어 어느 정도 면역억제 현상이 반반되는 것으로 알려져 있다.

만성진행형 질병과 관련된 retrovirus class로 lentivirus가 있는데 지금까지 비악성 질환, 예를 들면 뇌염, 신경계이상, 관절염, 패절환, 육혈성빈혈 등의 원인으로 알려져 있으며 유체류(有體類)에서만 분리되었다.

그러나 lentiretrovirus에 속하는 AIDS의 원인 virus로 HTLV -Ⅱ가 사람에서 발견되었고, AIDS와 유사질병을 일으키는 Simian T-lymphotropic virus인 STLV -Ⅲ가 원숭이에서 발견되었는데, 이들은 주로 T4-lymphocyte에 감염되어 치명적인 결과를 야기하는 것이 특징이다. 1)

HIV는 가장 복잡한 유전자 구조를 갖는 retrovirus로 알려져 있다. 다른 retrovirus에서처럼 gag(core structural gene), env(envelope glycoprotein), pol(viral DNA polymerase) gene과 바이러스 복제와 재어에 관련된 LTR(long
terminal repeats)이 genome의 양끝에 있다.

이외에 HIV에 특이한 tat III, art/trs, 3′-orf, sor 및 R 같은 5개의 non-structural gene 이 있으며 바이러스 복제에 있어 중요한 조절기능을 갖는 것으로 알려져 있다.

HIV의 유전자 구조 및 그 기능들이 차츰 밝혀지면서 이 바이러스의 중식을 역제하는 화합물을 탐색하는데 있어 훌륭한 target들이 제공되고 있다. 이러한 target를 요약하면 Table 1과 같다. 1)

Table 1. Stages in the replicative cycle of a pathogenic human retrovirus which may be targets for therapeutic intervention.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Potenital intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binding to target cell</td>
<td>Antibodies to the virus or cell receptor</td>
</tr>
<tr>
<td>Early entry into target cell</td>
<td>Drugs that block fusion or interfere with retroviral uncoating</td>
</tr>
<tr>
<td>Transcription of RNA to DNA</td>
<td>Reverse transcriptase inhibitors</td>
</tr>
<tr>
<td>by reverse transcriptase</td>
<td></td>
</tr>
<tr>
<td>Degradation of viral RNA in an RNA-DNA hybrid</td>
<td>Inhibitors of RNase H activity</td>
</tr>
<tr>
<td>Intergration of DNA into host genome</td>
<td>Drugs which inhibit pol gene-mediated 'integrase' function</td>
</tr>
<tr>
<td>Expression of viral genes</td>
<td>'Anti-sense' constructs; Inhibitors of the tat-III protein or art/trs protein</td>
</tr>
<tr>
<td>Viral component production and assembly</td>
<td>Myristlation, glycosylation and protease inhibitors or modifiers</td>
</tr>
<tr>
<td>Budding of virus</td>
<td>Interferons</td>
</tr>
</tbody>
</table>
HIV는 표면의 gp120을 통해 T세포 표면의 CD4 단백과 결합함으로써 세포내로 침입한다는 것이 알려져 gp120과 CD4의 결합을 차단하는 화합물에 대한 연구가 진행되어 cytoplasm과 transmembrane domain이 없는 soluble CD4에 대한 in vitro 실험에서 HIV의 결합과 표면세포에서의 복제가 저해되는 것이 알려졌다. 또한 gp120의 약 40%가 glycosylation되어 CD4와의 결합에 중요한 역할을 하므로 glycosylation 저해제에 대한 연구도 진행되어 castanospermine 및 1-deoxynogirimycin 등이 in vitro에서 glycosylation을 방해하는 것이 알려졌다. 5)

이에선 phosphorylation, myristylation 등을 억제하는 물질은 AIDS 치료제로 개발될 가능성을 높다. 최근 dextran sulfate와 heparin 같은 sulfated polysaccharide가 gp120과 CD4의 결합을 억제함이 밝혀졌다. 6) 또한 gp120의 일부 분인 10개 아미노산으로 된 “peptide T”가 바이러스의 표면세포 결합을 억제한다는 보고도 있다.

HIV에는 이 바이러스 특유의 protease가 있어 p160 gag-pol의 전구 단백질을 가수분해하는데 관여한다. 이 protease는 99개의 아미노산으로 구성되어 있으며 dimer로서 효소활성을 나타낸다. Aspartic protease로 분류되는 이 protease는 proline과 aromatic 아미노산 사이를 절단하는 효소로 이 효소를 저해하면 HIV의 중식에 중요한 peptide의 processing이 안됨으로 해서 바이러스의 기능을 상실하게 될 것이므로 이 protease저해제 연구도 활발하다. 7)

표면세포의 수용체에 결합한 HIV는 세포안으로 들어가 viral RNA로부터 reverse transcriptase에 의해 DNA가 역전사되고 복제된 DNA는 double strand로 된 후 chromosome에 integration되어 provirus로 존재한다.

Anti-AIDS 약물개발의 표적으로 이 바이러스 특유의 reverse transcriptase 가
가장 효과적인 것으로 생각되어 이 효소 저해제 개발에 많은 노력이 집중되고 있다. 많은 dideoxynucleotide들이 세포내의 kinase에 의해 인산화된 후 강력하고 선택적으로 RTase를 저해하여 HIV의 복제를 억제함이 알려졌고 그중 AZT(3'-azido, 2', 3'-dideoxycytidine)가 가장 유명한 화합물로서 FDA의 인가를 받아 사용되고 있으나 bone marrow 억제 및 T-cell을 포함한 적혈구 생산감소등 심각한 부작용으로 장기간 사용에 문제가 있다.

2', 3'-dideoxycytidine(ddC)는 강력한 anti-HIV nucleoside로서 phase I 실험 중에 있는데 AZT와 마찬가지로 HIV p24 antigen을 감소시키는 작용이 있어 HIV의 복제를 억제한다는 사실이 입증되었다.

Dideoxy nucleoside 외에 reverse transcriptase를 저해하는 화합물로 pyrophosphate analog인 phosphonoformate(잎명 Foscarnet)가 in vitro에서 HIV 복제를 저해함이 밝혀져 임상실험중에 있고 rifamycin 유도체도 전임상시험중에 있는 것으로 보고되었다.

최근 Declercg 등은 benzodiazepine 계 화합물인 tetrahydro - imidazo [4,5,1-]k [1,4] - benzodiazepin-2-(1H)-one과 -thione(TIBO)이 HIV의 복제를 저해하며 AZT보다 월성 강력하고 안정성도 좋다고 보고하였다. 이 물질도 HIV의 reverse transcriptase를 저해할 것으로 예상하고 있다. 8)

천연물로부터 치료약품 개발을 위한 노력을 avermectin, mevacor 등의 성공 이후 다시 각광을 받아 활발하게 연구되고 있는데 AIDS 치료제 개발을 위한 screening에서는 주로 reverse transcriptase를 target으로 하고 있다. 미생물 대사산물로부터 reverse transcriptase 저해가 screening은 AMV 효소를 model로 하여 일본에서 활발하게 진행되었다.

Reverse transcriptase를 저해하는 기저 항생물질로는 adriamycin 및 그 유도체, ansamycin 계통의 수중 그리고 streptionigrin 등이 보고되었는데, 그중 RNA
template에 결합해서 DNA 전사를 저해하는 actinomycin D나 adriamycin 계열, RNA polymerase에 결합하여 효소 활성을 저해하는 ansamycin 계열의 streptovaricin, geldanamycin, rifamycin SV 유도체 등은 선택성이 결여되어 문제가 되는 듯하다.

최근 AMV 역전사효소를 model로 screening 된 revistin\(^9\), retrostatin\(^10\), limocrocin\(^11\), sakyomycin\(^12\), oxetanocin\(^13\) 등이 보고되었다.

한편, protoberberine과 benzophenanthridine alkaloid 중에서 fagaronine, nitidine 등이 RNA tumor virus의 역전사 효소를 저해한다는 보고\(^14\)-\(^16\) 이후 식물, 해조류 등에서의 역전사 효소 저해제 탐색도 활발하다.

Alkaloid 뿐만 아니라 tannin\(^17\)과 flavonoid\(^18\)의 역전시 효소 저해활성에 관한 연구도 진행되어, hydrolyzable tannin이 poly(rA)-oligo(dT)를 template-primer로 해서 nitidine에 필적할만한 강한 저해작용이 있다는 것이 보고되었고, fisetin, quercetin, myricetin 등의 flavonoid 도 역전사 효소에 대하여 강력한 활성을 갖고 있다고 알려졌다.

최근에는 Anemone flaccida라는 식물의 근경에서 분리한 두 종류의 triterpene saponin이 역전사 효소 저해활성을 갖고 있는 것으로 보고되었다.\(^19\)

Oleanolic acid를 aglycone으로 하는 flaccidin B(oleanolic acid 3-0-\(\beta\)
\(-D\)-glucopyranosyl-(1\(\rightarrow\)2)-\(\beta\)-D-xylopyranoside)와 giganteaside D(oleanolic aced-3-0-\(\alpha\)-L-rhamnopyranosyl-(1\(\rightarrow\)2)-\(\beta\)-D-xylopyranoside)가 바로 그것인데 역전사 효소에 대한 저해활성에 있어서는 flaccidin B가 더 강하게 나타나 sugar moiety가 활성에 중요한 역할을 하는 것으로 추측된다. 해조류에서 또한 역전사 효소를 저해하는 새로운 물질로 분리 보고된 SAE(Sea algal extract)는 galactose(73\%), sulfonate(20\%), 3-6-anhydrogalactose(0.65\%)로 구성된 sulfated polysaccharide로 \(\gamma\)-carrageenan family에 속하며, in vitro 에서 HIV의 역전사 효소를 선택적으로 저해하는 것으로 알려져 관심을 모으고 있다.\(^{20}\),\(^{21}\)
제 2장 실험재료와 방법

1. 시약, 기기 및 배지

 (1) 시약 및 기기

 세포배양을 위하여 사용한 RPMI 1640배지와 fetal bovine serum은 Gibco사의 제품을 사용하였다.

 각 화합물의 분리와 정교에 이용한 기기는 다음과 같다.

 UV: Millton Roy Spectronic 3000 Array

 IR: Laser Precision Analytical RFX-65 FTIR Spectrometer

 NMR: Varian 500 NMR Spectrometer

 HPLC: Waters System(501 Pump / 745B Data module / Automated Gradient Controller)

 MS: HP 5989A MASS Spectrometer
(2) 배지
방선균의 분리를 위해서는 arginine-glycerol-salt agar와 HV agar, Bennet medium 및 augmentin과 nystatin을 함유한 OMYM plate를 사용하였고, 배양을 위해서는 fermentation medium, MCLM-1, MCLM-2를 사용하였으며, 그 조성은 아래와 같다.

<Arginine-glycerol-salt agar>

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>arginine monohydrochloride</td>
<td>1 g</td>
</tr>
<tr>
<td>Glycerol</td>
<td>12.5 g</td>
</tr>
<tr>
<td>K2HPO4</td>
<td>1 g</td>
</tr>
<tr>
<td>NaCl</td>
<td>1 g</td>
</tr>
<tr>
<td>MgSO4.7H2O</td>
<td>0.5 g</td>
</tr>
<tr>
<td>Fe2(SO4)3.6H2O</td>
<td>0.01 g</td>
</tr>
<tr>
<td>CuSO4.5H2O</td>
<td>0.001 g</td>
</tr>
<tr>
<td>ZnSO4.7H2O</td>
<td>0.001 g</td>
</tr>
<tr>
<td>MnSO4.H2O</td>
<td>0.001 g</td>
</tr>
<tr>
<td>agar</td>
<td>20 g</td>
</tr>
<tr>
<td>cycloheximide</td>
<td>100 µg/ml</td>
</tr>
</tbody>
</table>

D.W. 1 l

adjust to pH 7.2
< HV(Humic acid-Vitamin) agar >

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humic acid</td>
<td>1 g (dissolved in 0.2N NaOH)</td>
</tr>
<tr>
<td>Na₂HPO₄</td>
<td>0.5 g</td>
</tr>
<tr>
<td>KCl</td>
<td>1.7 g</td>
</tr>
<tr>
<td>FeSO₄.7H₂O</td>
<td>0.01 g</td>
</tr>
<tr>
<td>B-vitamine</td>
<td>trace</td>
</tr>
<tr>
<td>cycloheximide</td>
<td>50 ny</td>
</tr>
<tr>
<td>agar</td>
<td>18 g</td>
</tr>
</tbody>
</table>

D.W. 1 l
adjust to pH 7.2

< Bennet medium >

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose</td>
<td>10 g</td>
</tr>
<tr>
<td>Bacto-peptone</td>
<td>2 g</td>
</tr>
<tr>
<td>Beef ext.</td>
<td>1 g</td>
</tr>
<tr>
<td>Yeast ext.</td>
<td>1 g</td>
</tr>
</tbody>
</table>

D.W. 1 l
adjust to pH 7.2
< Fermentation medium >

Soluble starch 20 g
Glucose 10 g
Soy bean meal 25 g
Beef extract 1 g
Yeast extract 4 g
NaCl 2 g
CaCO₃ 2 g
K₂HPO₄ 0.05 g

D.W. 1 l

adjust to pH 6.8 - 7.0

< OMYM >

Oatmeal 20 g
Glucose 2 g
Malt extract 2 g
Yeast extract 2 g
CoSO₄.7H₂O 0.006 g
ZnSO₄.7H₂O 0.003 g
MnSO₄.4-5H₂O 0.003 g
FeSO₄.7H₂O 0.003 g

D.W. 1 l

adjust to pH 7.0
< MCLM-1 >

Oatmeal 20 g
Glucose 10 g
Malt extract 2 g
Yeast extract 2 g
Soy bean meal 10 g
Starch 12 g
CoSO$_4$.7H$_2$O 0.006 g
ZnSO$_4$.7H$_2$O 0.003 g
MnSO$_4$.4-5H$_2$O 0.003 g
FeSO$_4$.7H$_2$O 0.003 g

D.W. 1 l
adjust to pH 7.0

< MCLM-2 >

Glycerol 25 g
Soytonge 5 g
Glucose 5 g
Yeast extract 2 g
K$_2$HPO$_4$ 2 g
CaCO$_3$ 0.25 g

D.W. 1 l
adjust to pH 7.0
2. 방선균의 분리와 배양, 시료의 제조

전국 각지에서 체집한 토양시료 일정량을 병균증류수로 10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}으로 회석한 후 arginine-glycerol-salt agar, HV agar, Bennet medium와 augmentin 200μg/ml, nystatin 100μg/ml을 포함하는 OMYM plate에 각각 0.1ml씩 도 발하여 28℃에서 72시간동안 배양하여 나타난 single colony를 Bennet medium에 옮 겨서 colony의 모양, 가용성 색소의 생성유무, spore의 형성유무 및 형태 등을 관찰하여 각기 다르다고 판단되는 균주만을 선별하였다.

위와 같이 선별한 방선균은 fermentation medium, MCLM-1, MCLM-2 배지 10ml에 접종하여 28-30℃에서 6일간 220-250rpm에서 진탕배양하여 방선균의 배양액을 얻 고, 배양액 5ml를 취하여 동결건조한 후 CH2Cl2과 MeOH 1:1의 혼합용매로 추출하 고, 500μl로 농축하여 이를 시료로 하였다.

3. 생약시료의 제조

1차년도에서 reverse transcriptase에 저해성을 보였던 생약중 대다수의 활 성성분으로 추정되는 58종의 polyphenol화합물은 20μg/ml의 농도가 되도록 DMSO에 녹이고, 최종농도가 80μg/ml이 되도록 증류수로 회석하여 사용하였다.

4. Reverse transcriptase inhibition assay

방선균의 배양액과 생약 성분들에 대하여 AMV(avian myeloblastosis virus)의 reverse transcriptase를 이용하여 각 화합물의 inhibition정도를 측정하였으며, template - primer로는 poly(rA)-oligo(dT)를 사용하였다.
본 실험에서는 assay solution의 조성을 Nakamura 등이 기존에 쓴고 있던 방법을 Promega사의 standard assay condition을 참고로 하여 최종농도를 50mM Tris-HCl(pH8.3), 6mM MgCl₂, 1mM dithiothreitol, 40mM KCl, 0.1mM TTP, 5.0μg/ml poly(rA), 0.02U/ml oligo(dT)₁₂₋₁₈, 5μCi/ml [³H]-TTP, 0.1mg/ml BSA, 3U/ml reverse transcriptase로 변경하여 사용하였다. 여기에서 RTase 1U는 standard assay condition에서 37℃로 10분간 두었을 때 1μM의 dTTP가 acid insoluble form으로 혼합되도록 하는 enzyme의 양으로 하였다.

때 실험의 목적을 판단하기 위하여 RTase inhibition assay의 시표물질로 사용한 2',3'-dideoxy thymidine 5'-triphosphate의 농도별 자해활성은 Table 2와 같으며, 이 중에서 1.0μg/ml의 농도를 control로 하여 60±5%의 자해활성을 보였을 때 반응이 적절한 것으로 판단하였다.
Table 2. Inhibitory activity of reverse transcriptase by ddTTP.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Conc. (µg/ml)</th>
<th>CPM #1</th>
<th>CPM #2</th>
<th>Average</th>
<th>Inhibition %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>277.0</td>
<td>247.0</td>
<td>262.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive control</td>
<td>DDW</td>
<td>7734.0</td>
<td>8621.0</td>
<td>8177.5</td>
<td></td>
</tr>
<tr>
<td>ddTTP</td>
<td>5</td>
<td>1189.0</td>
<td>1004.0</td>
<td>1096.5</td>
<td>89.5</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>791.0</td>
<td>871.0</td>
<td>831.0</td>
<td>92.8</td>
</tr>
<tr>
<td></td>
<td>1.25</td>
<td>1980.0</td>
<td>2171.0</td>
<td>2075.5</td>
<td>77.1</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>3424.0</td>
<td>3195.0</td>
<td>3309.5</td>
<td>61.5</td>
</tr>
<tr>
<td></td>
<td>0.625</td>
<td>4592.0</td>
<td>4214.0</td>
<td>4403.0</td>
<td>47.7</td>
</tr>
<tr>
<td></td>
<td>0.3125</td>
<td>6408.0</td>
<td>6605.0</td>
<td>6506.5</td>
<td>21.1</td>
</tr>
</tbody>
</table>

Reverse transcriptase에 높은 저해활성을 보인 화합물들에 대하여는 4단계로 단계별 회석하여 각 성분에 대한 IC50를 측정하였다. 실험에 사용한 reaction buffer와 enzyme solution의 조성 및 실험방법은 다음과 같다.
1) Reaction buffer

<table>
<thead>
<tr>
<th>Content</th>
<th>Volume (40)</th>
<th>final conc. (in 1X PM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0M Tris-HCl (pH 8.3)</td>
<td>100</td>
<td>50 mM</td>
</tr>
<tr>
<td>0.3M MgCl₂</td>
<td>40</td>
<td>6 mM</td>
</tr>
<tr>
<td>1.0M Dithiothreitol</td>
<td>2</td>
<td>1 mM</td>
</tr>
<tr>
<td>1.0M KCl</td>
<td>80</td>
<td>40 mM</td>
</tr>
<tr>
<td>10mM TTP</td>
<td>20</td>
<td>0.1 mM</td>
</tr>
<tr>
<td>0.5mg/ml poly(rA)</td>
<td>20</td>
<td>5.0 µg/ml</td>
</tr>
<tr>
<td>1.0U/ml oligo(dT)₁₂₋₁₈</td>
<td>40</td>
<td>0.02 U/ml</td>
</tr>
<tr>
<td>[³H] TTP (1mCi/ml)</td>
<td>12.5</td>
<td>5 uCi/ml</td>
</tr>
<tr>
<td>0.5mg/ml BSA</td>
<td>4</td>
<td>0.1 mg/ml</td>
</tr>
<tr>
<td>H₂O</td>
<td>181.5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>500 µl</td>
<td>4X no enzyme reaction mixture</td>
</tr>
</tbody>
</table>

2) Enzyme solution

Reverse transcriptase	0.75	3 U/ml
Dilution buffer	29.25	
H₂O	470	

500 µl 4X reaction mixture (Sample + Positive)
3) 실험방법

시액 25μl에 enzyme solution 12.5μl와 reaction buffer 12.5μl을 가하여 균일하게 혼합한 후 Fig. 2에서와 같이 37℃에서 60분간 incubation하였다. Ice bath에서 반응을 중지시키고 50μl의 reaction mixture중 40μl씩을 취하여 지름 2.4cm의 DEAE-filter paper에 흡착시켰다. Filter paper는 30분 동안 5% NaHPO₄.12H₂O 용액으로 세 번 씻고, 이어서 물로 두 번, EtOH로 한 번 세척한 다음 완전히 건조하여 남아있는 radioactivity를 xylene-based scintillation cocktail에 넣어 LSC로 측정하였다. Positive control로는 0.08% DMSO 용액과 증류수를 사용하였고, negative control은 증류수 37.5μl에 reaction buffer 12.5μl만 가하여 다른 시액들과 똑같은 조작을 거쳤다. 반응의 적정도를 확인하기 위하여 이미 RT inhibitor로 알려진 2',3'-dideoxythymidine-5'-triphosphate를 지표물질로 이용하였으며, 저해활성은 아래와 같이 inhibition percentage로 계산했다.

\[
\% \text{ Inhibition} = \frac{\text{CPM} / \text{PC} - \text{CPM} / \text{SAMPLE}}{\text{CPM} / \text{PC} - \text{CPM} / \text{NC}} \times 100
\]
Reaction mixture

↓ covered with parafilm.

↓ incubated at 37°C for 60 min.

↓ reaction is terminated by placing in ice-cold water bath

40μl aliquot

↓ soaked into 2.4cm round piece of DEAE-filter paper.

↓ washed 3 times with 5w Na₂HPO₄·12H₂O with intermittent shaking for ca. 30 min.

↓ rinsed twice with distilled water and finally with ethanol.

↓ air-dried until complete dryness.

DEAE-filter paper

↓ transferred into scintillation vial.

↓ fed with 10ml xylene-based scintillation cocktail.

↓ counted radioactivity

CPM/NC, PC or SAMPLE

Fig. 1. Procedure of reverse transcriptase inhibition assay
5. Syncytia forming assay

미생물 배양액에서 reverse transcriptase에 저해활성을 보인 분획과, polyphenol 화합물 중 reverse transcriptase에 강한 저해활성을 보인 ellagittannin류 화합물에 대하여 AIDS 치료제로의 가능성을 test하기 위해 포항공 대와의 협력으로 in vitro에서 syncytia forming assay를 실시하였다. Assay에 사용한 virus는 HIV의 nef gene를 CAT(chloramphenicol acetyl transferase)으로 바꾼 SVCAT를 이용하였고, cell은 syncytia를 잘 형성하는 SubT1을 사용하였다. 각각의 시료는 농도별로 희석하여 virus와 cell과 함께 4일동안 배양한 후 생성된 syncytia의 수를 대, 소로 나누어 count하였고 control로는 azidothymidine을 사용하였다.

6. 인체유암세포주 MCF-7 cell에 대한 형태변화 유도활성 측정

방선균 배양액과 생약 시료를 3단계로 단계별 희석하여 MCF-7 cell의 형태변화 유도를 관찰하였다. MCF-7 cell은 10% fetal bovine serum이 함유된 RPMI 1640 배지에서 5% CO₂ humidified chamber를 써서 배양하였다. 시료의 활성은 MCF-7 cell을 trypsin으로 처리 후 5,000 cells/well로 넣은 다음 24시간후에 시료를 가하고, 다시 48시간 배양 후에 현미경 하에서 형태변화 유도를 관찰하였다.

7. Streptomyces sp. AZ01로부터 활성성분의 분리와 정제

Fermentation 배지에서 배양한 300종의 방선균 배양액과 MCLM-1과 MCLM-2에서 배양한 200종의 방선균 배양액에 대해서 reverse transcriptase inhibition assay
를 시시한 결과 35종이 60% 이상의 저지활성을 나타내었으며, 그 중 높은 활성을 나타낸 Streptomyces sp. AZ01에 대하여 활성성분의 분리를 행하였다.

Streptomyces sp. AZ01은 28℃에서 1.5ℓ의 fermentor에서 6일동안 4회 배양하였고, 각각의 배양액을 원심분리하여 supernatant와 cell debri로 나눈 다음 활성
이 강한 cell debri를 감압 하에서 원전히 능축한 후 20μg/ml의 농도가 되도록
DMSO에 녹여 최종농도는 80μg/ml, 160μg/ml이 되도록 하여 활성을 측정하였다. 이
test solution에 대한 assay를 통해 각 용매분획의 활성여부를 확인하고, 그 중에
서 가장 높은 활성을 보인 EtOAc 중에 대해서 silica gel column chromatography와
HPLC 등을 이용하여 활성성분의 분리를 시도하였다.
Cultured Broth of *Streptomyces* sp. AZ01 (1.5 l × 4)

fermentation (28°C, 6 days)

centrifuge (8,000 rpm, 20 min)

Supernatant Cell debri

extraction with CH₂Cl₂–MeOH (1:1)

partition with Hexane

Hexane MeOH

evaporation in vacuo.

partition with EtOAc and H₂O

EtOAc H₂O

partition with BuOH and H₂O

BuOH H₂O

Fig. 2. Fractionation of *Streptomyces* sp. AZ01
제 3 장 결과와 고찰

1. *Streptomyces* sp. AZ01의 활성과 분리정제 및 구조동정

(1) Reverse transcriptase 저해 활성

Streptomyces sp. AZ01을 MCLM-1 배지를 이용해서 28℃에서 6일간 배양해서 얻은 6ℓ의 배양액을 8000 rpm에서 원심분리하여 cell debri와 supernatant로 나눈 다음, cell debri를 Fig. 2와 같이 각종 유지응애 분획으로 나누었다. 각각의 분획에 대하여 최종농도를 160μg/ml로 조정하여 RTase 저해활성을 측정한 결과 Hexane Fr., EtOAc Fr., n-BuOH Fr., H2O Fr.이 각각 44.5%, 57.0%, 24.0%, 4.8%의 저해활성을 나타내었다. 가장 높은 저해활성을 보인 EtOAc Fr.를 MPLC를 이용하여 dichloromethane : methanol = 20:1의 전개용매로 silica gel column chromatography를 행하였다. 계속해서 활성분획을 Delta Pak C10-100 (7.8mm × 30cm) preparative column을 사용하여 90% MeOH의 용매 조건으로 preparative HPLC를 2회 반복하여 순수화합물인 compound I (3mg), compound II (5mg), compound III (2mg)을 얻었다. 이 화합물에 대하여 reverse transcriptase에 대한 저해활성을 측정한 결과를 Table 3에 나타내었다.
Table 3. Reverse transcriptase inhibitory activity of compound I, II and III.

<table>
<thead>
<tr>
<th>Conc. (µg/ml)</th>
<th>comp. I</th>
<th>comp. II</th>
<th>comp. III</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>82.5%</td>
<td>70.6%</td>
<td>9.3%</td>
</tr>
<tr>
<td>200</td>
<td>56.9%</td>
<td>58.1%</td>
<td>4.4%</td>
</tr>
<tr>
<td>100</td>
<td>33.6%</td>
<td>26.1%</td>
<td>4.2%</td>
</tr>
<tr>
<td>50</td>
<td>21.9%</td>
<td>13.8%</td>
<td>5.8%</td>
</tr>
</tbody>
</table>

| IC₅₀ (µg/ml) | 145.9 | 188.3 | - |

(2) MCF-7 cell의 형태변화 유도활성

Streptomyces sp. AZ01의 각 분획에 대하여 MCF-7 cell의 형태변화 유도활성을 조사한 결과 Hexane Fr.과 n-BuOH Fr.은 약한 형태변화 유도활성을 나타내었으나 Ethylacetate Fr.은 강한 유도활성을 나타내었다. *Silica gel column chromatography*와 preparative HPLC를 통하여 순수분리된 compound I, compound II, compound III의 세 화합물 중 compound II의 경우 2.5ng/ml의 농도에서 시료처리 2시간 후부터 MCF-7 cell의 형태변화를 유도하는 가장 강력한 활성을 보여주었다.
(3) Compound I의 구조 동정

Compound I은 UV 261nm에서 흡수극대를 나타낸으로 isoflavonoid의 특징적인 UV 흡수 pattern을 나타내었다. 2M NaOH 수용액을 가했을 때 275nm로 흡수대가 이동하였고, NaOAc를 가했을 때에는 272nm로, 여기에 다시 H₃BO₃를 첨가하여 263nm로 흡수밴드가 이동하였다. NaOAc는 flavonoid의 가장 강한 산성을 미는 hydroxyl group만을 ionization시켜서 bathochromic shift를 일으키는 것으로 여기에서 compound I이 free 7-OH group을 가지는 것을 확인할 수 있었다. NaOAc/H₃BO₃ spectrum은 ortho-dihydroxy group의 존재를 확인하는 것으로 compound I에서는 거의 이동이 일어나지 않아 ortho-dihydroxy group이 존재하지 않음을 확인할 수 있었다. 22)

Table 4. UV spectral maxima of compound I

<table>
<thead>
<tr>
<th>Compound</th>
<th>Addition</th>
<th>λ max (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>None</td>
<td>NaOH</td>
</tr>
<tr>
<td>Compound I</td>
<td>261</td>
<td>275</td>
</tr>
</tbody>
</table>
Fig. 3의 1H-NMR spectrum에서 δ 8.22에서 1H의 singlet은 isoflavonoid의 H-2의 proton으로, δ 7.55와 δ 7.03의 각각 2H(J=8.4Hz)의 doublet은 H-2',6'와 H-3',5'로 추정할 수 있었고, δ 6.49(1H, J=1.8) δ 6.37(1H, J=1.8)의 doublet은 H-6, H-8의 proton으로 결정할 수 있었다. 23), 24)

Fig. 3. 1H-NMR spectrum of compound I (500MHz, CD$_3$OD)
Mass spectrum (Fig. 4)에서 m/z 118, 153, 270은 각각 Fig. 4의 fragment a, b, c와 잘 일치하나 25) m/z 298의 fragmentation peak가 어디에서 유래했는지 확실 하지 않아. 이 화합물은 genistein을 기본골격으로 갖는 genistein의 유도체로 추정하고 계속해서 구조를 동정중에 있다.

![Mass spectrum diagram]

Fig. 4. Mass spectrum of compound I
(4) **Compound II 의 구조 동정**

Comp. II는 233, 286, 298(sh) nm에서 UV 흡수를 나타내므로 4-aminoindole chromophore를 가지고 있음을 알 수 있었으며, 1H-NMR spectrum을 teleocidin B와 비교하여 볼 때 (Table 5) 12번 위치의 proton을 제외하고는 각각의 chemical shift 가 거의 동일함을 알 수 있었다.

Comp. II의 Mass spectrum(Fig.5)에서도 m/z 451을 비롯하여 m/z 408, 365, 321 등의 전형적인 teleocidin B에 해당하는 fragmentation을 보이며 comp. II는 teleocidin B로 동정하였다.26), 27), 28)

Fig. 5. Mass spectrum of compound II

R = H : Teleocidin B
R = Me : Olivoretin A

Fig. 6. Structure of teleocidin B and olivoretin A
Table 5. Comparison of 1H-NMR chemical shifts for comp. II and teleocidin B

<table>
<thead>
<tr>
<th>No.</th>
<th>compound II</th>
<th>teleocidin B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.67 (1H, br s)</td>
<td>8.67 (1H, br s)</td>
</tr>
<tr>
<td>2</td>
<td>6.76 (1H, br s)</td>
<td>6.78 (1H, br s)</td>
</tr>
<tr>
<td>6</td>
<td>6.50 (1H, s)</td>
<td>6.50 (1H, s)</td>
</tr>
<tr>
<td>10a</td>
<td>3.13 (1H, br d, J=17.2)</td>
<td>3.10 (1H, br d, J=16.9Hz)</td>
</tr>
<tr>
<td>10b</td>
<td>2.91 (1H, dd, J=17.2, 3.7)</td>
<td>3.02 (1H, dd, J=16.9, 3.4Hz)</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>4.34 (1H, m)</td>
</tr>
<tr>
<td>12</td>
<td>6.37 (1H, br s)</td>
<td>7.70 (1H, br s)</td>
</tr>
<tr>
<td>14</td>
<td>4.29 (1H, d, J=10.2)</td>
<td>4.32 (1H, d, J=10.2Hz)</td>
</tr>
<tr>
<td>20a</td>
<td>3.70 (1H, dd, J=11.0, 4.1)</td>
<td>3.71 (1H, dd, J=12.1, 3.4Hz)</td>
</tr>
<tr>
<td>20b</td>
<td>3.48 (1H, dd, J=11.8, 7.5)</td>
<td>3.55 (1H, dd, J=12.1, 7.9Hz)</td>
</tr>
<tr>
<td>21</td>
<td>2.61 (1H, d septet, J=10.2, 6.5)</td>
<td>2.60 (1H, d septet, J=10.2, 6.4)</td>
</tr>
<tr>
<td>22</td>
<td>0.90 (3H, d)</td>
<td>0.91 (3H, d, J=6.4Hz)</td>
</tr>
<tr>
<td>23</td>
<td>0.67 (3H, d)</td>
<td>0.69 (3H, d, J=6.8Hz)</td>
</tr>
<tr>
<td>24</td>
<td>2.90 (3H, s)</td>
<td>2.90 (3H, s)</td>
</tr>
<tr>
<td>25</td>
<td>1.33 (3H, s)</td>
<td>1.35 (3H, s)</td>
</tr>
<tr>
<td>26</td>
<td>2.23 (1H, septet, J=6.8)</td>
<td>2.25 (1H, septet, J=6.8Hz)</td>
</tr>
<tr>
<td>27</td>
<td>0.52 (3H, d, J=6.7)</td>
<td>0.53 (3H, d, J=6.8Hz)</td>
</tr>
<tr>
<td>28</td>
<td>1.00 (3H, d)</td>
<td>1.01 (3H, d, J=6.8Hz)</td>
</tr>
<tr>
<td>29</td>
<td>1.50 (3H, s)</td>
<td>1.51 (3H, s)</td>
</tr>
<tr>
<td>30</td>
<td>6.14 (1H, dd, J=17.7, 10.6)</td>
<td>6.16 (1H, dd, J=17.5, 10.6Hz)</td>
</tr>
<tr>
<td>31a</td>
<td>5.40 (1H, dd, J=17.7, 1.2)</td>
<td>5.40 (1H, d, J=17.5Hz)</td>
</tr>
<tr>
<td>31b</td>
<td>5.23 (1H, dd, J=10.6, 1.2)</td>
<td>5.24 (1H, d, J=10.6Hz)</td>
</tr>
</tbody>
</table>

(Compound II: 500MHz, teleocidin B: 270MHz)
(5) Compound III의 구조 동정

Comp. III은 233, 286, 298 (sh)nm에서 UV 흡수를 나타내므로 comp. II와 같이 4-aminooindole chromophore를 가지고 있음을 알 수 있었으며, 1H-NMR spectrum을 olivoretin A와 비교하여 볼 때 (Table 6) 각각의 chemical shift가 거의 동일함을 알 수 있었다.

Mass spectrum (Fig. 7)에서도 olivoretin A에 해당되는 m/z 465의 base peak를 비롯하여 m/z 422, 379, 321등의 olivoretin A에 해당하는 fragmentation pattern 을 보이므로 comp. III은 olivoretion A로 동정하였다.

Fig. 7. Mass spectrum of compound III
Table 6. Comparison of 1H-NMR chemical shifts for comp. III and olivoretin A

<table>
<thead>
<tr>
<th>No.</th>
<th>compound III</th>
<th>olivoretin A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.61 (1H, br s)</td>
<td>8.80 (1H, br s)</td>
</tr>
<tr>
<td>2</td>
<td>6.75 (1H, triplet)</td>
<td>6.76 (1H, m)</td>
</tr>
<tr>
<td>6</td>
<td>6.50 (1H, s)</td>
<td>6.51 (1H, s)</td>
</tr>
<tr>
<td>10a</td>
<td>3.13 (1H, br d, J=16.9)</td>
<td>3.14 (1H, br d, J=17.4Hz)</td>
</tr>
<tr>
<td>10b</td>
<td>2.86 (1H, dd, J=17.4,3.8)</td>
<td>2.87 (1H, dd, J=17.4, 3.6)</td>
</tr>
<tr>
<td>11</td>
<td>4.39 (1H, m)</td>
<td>4.41 (1H, m)</td>
</tr>
<tr>
<td>12</td>
<td>6.11 (1H, br s)</td>
<td>6.12 (1H, br s)</td>
</tr>
<tr>
<td>14</td>
<td>4.27 (1H, d, J=10.2)</td>
<td>4.28 (1H, d, J=10.2Hz)</td>
</tr>
<tr>
<td>20</td>
<td>3.35 - 3.27 (2H, m)</td>
<td>3.38 - 3.28 (2H, m)</td>
</tr>
<tr>
<td>21</td>
<td>2.61 (1H, d septet, J=10.2,6.6)</td>
<td>2.63 (1H, m, J=10.2, 6.6Hz)</td>
</tr>
<tr>
<td>22</td>
<td>0.90 (3H, d, J=6.4)</td>
<td>0.91 (3H, d, J=6.6)</td>
</tr>
<tr>
<td>23</td>
<td>0.67 (3H, d, J=6.8)</td>
<td>0.68 (3H, d, J=6.6)</td>
</tr>
<tr>
<td>24</td>
<td>2.90 (3H, s)</td>
<td>2.91 (3H, s)</td>
</tr>
<tr>
<td>25</td>
<td>1.34 (3H, s)</td>
<td>1.35 (3H, s)</td>
</tr>
<tr>
<td>26</td>
<td>2.24 (1H, septet, J=6.7)</td>
<td>2.25 (1H, septet, J=6.7Hz)</td>
</tr>
<tr>
<td>27</td>
<td>0.52 (3H, d, J=6.7)</td>
<td>0.54 (3H, d, J=6.7Hz)</td>
</tr>
<tr>
<td>28</td>
<td>1.00 (3H, d, J=6.7)</td>
<td>1.01 (3H, d, J=6.7Hz)</td>
</tr>
<tr>
<td>29</td>
<td>1.50 (3H, s)</td>
<td>1.51 (3H, s)</td>
</tr>
<tr>
<td>30</td>
<td>6.16 (1H, dd,J=17.7,10.6)</td>
<td>6.17 (1H, dd, J=17.8, 10.6)</td>
</tr>
<tr>
<td>31a</td>
<td>5.40 (1H, dd, J=17.7,1.2)</td>
<td>5.41 (1H, dd, J=17.8, 1.2)</td>
</tr>
<tr>
<td>31b</td>
<td>5.23 (1H, dd, J=10.6,1.2)</td>
<td>5.24 (1H, dd, J=10.6, 1.2)</td>
</tr>
<tr>
<td>34</td>
<td>3.29 (3H)</td>
<td>3.30 (3H, s)</td>
</tr>
</tbody>
</table>

(Compound III: 500MHz, olivoretin A: 270MHz)
2. 생약시료의 활성측정

(1) Reverse transcriptase 저해 활성

전년도의 연구결과에 따라 reverse transcriptase에 대하여 높은 활성을 보였던 지유(Sanguisorba officinalis), 대황(Rhei Rhizoma), 잎신나물(Agrimonia pilosa) 등의 생리활성성분이 polyphenol 화합물임이 밝혀지고 이러한 화합물들이 최근 host animals의 면역반응을 중진시킴으로 항암효과를 나타내며, HIV virus에 대한 복제 저감저항성, carcinogens의 돌연변이유발성의 저해, tumor promotion의 저해 등 다양한 생리활성을 나타낸다고 보고됨에 따라 주로 대극과(Euphorbiaceae)에서 분리된 polyphenol 화합물을 이용하여 reverse transcriptase 저해활동을 관찰하였다.

실험에 사용한 58종의 polyphenol 화합물 중 80μg/ml의 농도에서 60% 이상의 저해활동을 보인 화합물은 36종이었다. 이들 화합물 중 구조적으로 ellagitannin 륄에 속하는 화합물이 대체적으로 높은 활성을 보였으며, 이들에 대하여는 다시 최 종 농도가 80, 20, 5, 1.25μg/ml이 되도록 serial dilution하여 각 화합물의 IC₅₀ 를 구하였다.(Table 7)
Table 7. Inhibitory effect of polyphenol compounds against AMV reverse transcriptase.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Concentration(µg/ml)</th>
<th>IC<sub>50</sub>(µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.25</td>
<td>5</td>
</tr>
<tr>
<td>Punicafolin</td>
<td>36.4</td>
<td>88.7</td>
</tr>
<tr>
<td>Elaeocarpusin</td>
<td>22.1</td>
<td>58.3</td>
</tr>
<tr>
<td>Jolkianin</td>
<td>-5.2</td>
<td>17.2</td>
</tr>
<tr>
<td>Euphorscopin</td>
<td>23.5</td>
<td>81.6</td>
</tr>
<tr>
<td>Helioscopinin A</td>
<td>21.9</td>
<td>66.4</td>
</tr>
<tr>
<td>Helioscopinin B</td>
<td>6.3</td>
<td>8.2</td>
</tr>
<tr>
<td>Macaranganin</td>
<td>3.4</td>
<td>27.5</td>
</tr>
<tr>
<td>Excoecarianin</td>
<td>18.0</td>
<td>78.0</td>
</tr>
<tr>
<td>Rugosin E</td>
<td>3.5</td>
<td>34.4</td>
</tr>
<tr>
<td>2,5-(S)-HHDP-3,6-anhydro-</td>
<td>45.7</td>
<td>59.1</td>
</tr>
<tr>
<td>dromannofuranose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Desgalloyl eugeniin</td>
<td>24.7</td>
<td>51.7</td>
</tr>
<tr>
<td>Eugeniin</td>
<td>7.6</td>
<td>46.1</td>
</tr>
<tr>
<td>Casuarin</td>
<td>0.2</td>
<td>19.2</td>
</tr>
<tr>
<td>Pedunculagin</td>
<td>29.1</td>
<td>73.4</td>
</tr>
<tr>
<td>Carpinusin</td>
<td>0.3</td>
<td>51.9</td>
</tr>
<tr>
<td>Acetonilgeraniin</td>
<td>-10.3</td>
<td>8.2</td>
</tr>
<tr>
<td>Mallotusinin</td>
<td>-3.0</td>
<td>22.9</td>
</tr>
<tr>
<td>Ceraniin</td>
<td>-5.8</td>
<td>49.3</td>
</tr>
<tr>
<td>Hippomanin A</td>
<td>3.8</td>
<td>25.9</td>
</tr>
<tr>
<td>Gemin D</td>
<td></td>
<td>6.5</td>
</tr>
<tr>
<td>Tercatain</td>
<td>8.5</td>
<td>78.4</td>
</tr>
<tr>
<td>Putranjivaxin A</td>
<td>8.1</td>
<td>38.2</td>
</tr>
</tbody>
</table>
(2) Syncytia forming assay

Polyphenol 화합물의 reverse transcriptase에 대한 높은 저해활성과 HIV에 대한 직접적인 활성과의 연관성을 조사하기 위하여 각 화합물의 세포독성을 조사하고 syncytia forming assay를 실시한 결과 elaeocarpusin, gemin D, euphorscopin, jokkianin, p-methoxycinnamic acid 등이 2.5μg/mL의 농도에서, geraniin의 7종의 화합물이 5μg/mL의 농도에서 syncytia의 형성을 저해하였으나 거의 동일한 농도에서 subT1 cell에 대한 세포독성을 보였다.

(3) 인제유암세포주 MCF-7 cell에 대한 형태변화 유도활성

Polyphenol 화합물의 최중농도가 50μg/mL, 5μg/mL, 0.5μg/mL이 되도록 희석하여 인제유암세포주에 대한 형태변화 유도를 관찰한 결과 excoecarianin과 euphorscopin이 50μg/mL의 농도에서 MCF-7 cell의 형태변화를 유도하였다.

Fig. 8. Structure of euphorscopin and excoecarianin
제 4 장 결론 및 전의사항

Retrovirus의 증식에 필수적인 역전사 효소(reverse transcriptase)를 저해하는 물질을 screening하기 위해 AMV의 역전사 효소에 대한 토양 미생물 배양액 및 생약 추출물의 효소활성 저해효과를 측정하고, 그 중에서 높은 활성을 나타낸 Streptomyces sp. AZ01에 대하여 활성성분의 분리를 시도하였다.

Streptomyces sp. AZ01의 활성성분은 용매분획에서 EtOAc층으로 가장 많이 이행되므로 EtOAc층에 대한 silica gel column chromatography와 HPLC등을 이용한 분리기를 통하여 compound I, II, III을 각각 분리하였다. Compound I, II, III에 대한 구조 동정의 결과 compound I이 genistein 유토체, compound II가 teleocidin B, compound III가 olivoretin A로 확인되었다. 이들 화합물의 RTase에 대한 활성은 compound I이 145.9µg/ml, compound II가 188.3µg/ml의 IC50값을 보임으로써 예상보다는 비교적 낮은 활성을 나타내었다.

또 이들 화합물의 MCF-7 cell에 대한 형태변화유도 활성을 측정한 결과 compound II는 2.5ng/ml의 농도에서 활성을 나타내었고, compound III 역시 강력한 형태변화 유도활성을 보여주었다. 최근 retrovirus유래의 oncogene이 세포의 증식 및 조절기구와 밀접한 관련이 있다는 것이 밝혀졌고, 이러한 oncogene으로 transformed된 세포형태를 정상으로 복귀시키는 화합물의 screening으로 몇몇 신규 화합물이 검색되었다. 비록 본 실험에서 분리한 compound II와 III이 각각 teleocidin B와 olivoretin A로 밝혀졌으나, 이러한 접근 방법을 발견시켜서 현재 retrovirus유래의 oncogene ras와 fos로 변형된 세포를 본 실험실에서 확보하여 계 수 스트리닝함으로써 세포의 증식 및 분화에 관여하는 화합물의 검색도 가능하리라 고 본다.

1차년도에서 reverse transcriptase에 저해활동을 보였던 생약중 대다수의 활
성분분으로 추정되는 58종의 polyphenol 화합물들의 RT저해활성을 검토한 결과 80μg/ml의 농도에서 60% 이상의 저해능성을 보인 화합물은 36종이었다. 이들 화합물 중 구조적으로 ellagitannin류에 속하는 화합물이 대체적으로 높은 활성을 보였으며, 이들에 대하여는 다시 IC₅₀를 구한 결과 punicaefolin은 1.4μg/ml, euphorscopin과 pedunculagin은 2.4μg/ml, excoecarianin은 2.8μg/ml등의 높은 RT 저해활성을 나타내었다. 또한 polyphenol화합물의 인체유암세포주 MCF-7 cell에 대한 형태변화 유도를 간찰한 결과 excoecarianin과 euphorscopin이 50μg/ml의 농도에서 MCF-7 cell의 형태변화를 유도하였다.

본 연구에서는 새롭게 확립한 reverse transcriptase inhibition assay를 통하여 실험상의 오차를 최소한으로 줄여 활성을 측정할 수 있었으며, 현재까지는 AMV의 reverse transcriptase를 이용하였으나, 최근 HIV의 reverse transcriptase gene를 확보하였으므로 이를 E.coli에서 발현시켜 다량의 HIV 유래의 reverse transcriptase를 분리하여 실험에 사용하면 AIDS의 치료제 개발에 좀더 가까이 접근할 수 있을 것이다.

한편 HIV의 p160 gag-pol의 전구단백질을 가수분해하는데 관여하는 바이러스 특유의 protease가 알려져 있으며, 이러한 protease를 이용하여 저해제를 검색하는 assay method도 확립되어 있어, RTase의 저해활성과 병행함으로써 AIDS치료제의 개발가능성을 높일 수 있다.

효소를 이용한 저해제의 검색은 최종적으로는 virus에 대한 직접적인 활성이 검색되어야 한다. 국내의 연구진에 의해서도 HIV virus의 배양이 계속되고 있고 HIV의 nef gene을 CAT(chloramphenicol acetyl transferase)으로 치환한 SVCAT cell을 이용하여 in vitro에서 virus에 대한 직접적인 활성을 검색하는 syncytia forming assay방법이 확립되어 있으므로 앞으로 이 분야의 계속적인 연구가 진행된다면 국내에서 국제경쟁력을 갖춘 신규화합물의 개발도 가능하리라고 생각되어 계속적인 지원이 요청된다.
참고 문헌

J.Antibiotics, 38, 803 (1985)

12) Tanaka N., T.Okabe, N.Tanaka, Y.Take, Y.Inouye, S.Nakamura, H.Nakashima

13) Hoshino, N., N.Shimizu, N.Shimada, T.Takita and T.Takeuchi:
J.Antibiotics, 40, 1077 (1987)

17) Kakiuchi, N., M.Hattori, T.Namba, M.Nishizawa, T.Yamagishi and T.Okuda:

18) Inouye, Y., K.Yamaguchi, Y.Take and S.Nakamura: J.Antibiotics, 42, 1523
(1989)

19) Shen, Y.-L., W.-C.Ye, S.-X.Zhao, Y.-Z.Shu, M.Wataya, N.Kakiuchi,

21) Nakashima, H., Y.Kido, N.Kobayashi, Y.Motoki, M.Neushul and N.Yamamoto:

(1980)

(1979)

26) 小清水弘一: Nippon Nogeikagaku Kaishi, 64, 1221 (1990)

주 의

1. 이 보고서는 과학기술처에서 시행한 특정연구 개발사업의 연구보고서입니다.
2. 이 보고서 내용을 발표할 때에는 반드시 과학 기술처에서 시행한 특정연구개발사업의 연구 결과임을 밝혀야 합니다.
3. 국가과학기술기밀유지에 필요한 내용은 대외 적으로 발표 또는 공개하여서는 아니됩니다.