Citrus Bioflavonoids 유도체 및 대사산물로부터
심장순환기질환 예방치료용 유용물질의 개발

Development of Bioactive Substances for Prevention and Treatment of Cardiovascular Diseases from Derivatives or Metabolic Products of Citrus Bioflavonoids

한국생명공학연구원

과학기술부
제 출 문

과학기술부 장관 귀하

본 보고서를 “Citrus Bioflavonoids 유도체 및 대사산물로부터 신장순환기질환 예방치료용 유용물질의 개발”과제의 보고서로 제출합니다.

2003. 7.

주관연구기관명 : 한국생명공학연구원
주관연구책임자 : 정태숙
연구원 : 이상구, 이철호 오구택, 조경현
이우송, 최양규 김주명, 안소진
이대우, 유하나 박지영, 김칠태

위탁연구기관명 : 경북대학교
위탁연구책임자 : 최명숙
여백
보고서 초록

<table>
<thead>
<tr>
<th>과제관리번호</th>
<th>M1-0015-00-0012</th>
<th>해당단계 영구기간</th>
<th>2000. 8. 10 - 2003. 5. 31</th>
<th>단계 구분</th>
<th>(1단계) / (3단계)</th>
</tr>
</thead>
<tbody>
<tr>
<td>연구사업명</td>
<td>중 사 업 명</td>
<td>국책연구개발사업</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>세부사업명</td>
<td>국책생명공학융합화사업</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>연구과제명</td>
<td>중 과 제 명</td>
<td>Citrus Bioflavonoids 유도체 및 대사도출물로부터 실장순환기전의 예방치료용 유용성을의 개발</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>세부(단위)과제명</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>연구책임자</td>
<td>정 대 숙</td>
<td>해당단계 참여연구원수</td>
<td>총 : 19 명</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>내부 : 9 명</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>외부 : 10 명</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>해당단계 연구비</td>
<td>정부 : 348,000 천원</td>
<td>기업 : 75,000 천원</td>
<td>간판 : 444,000 천원</td>
</tr>
<tr>
<td>연구기관명 및 소속부서명</td>
<td>한국생명공학연구원 지질대사연구실</td>
<td>참여기업명</td>
<td>(주) 마이크로아이디</td>
<td></td>
<td></td>
</tr>
<tr>
<td>국체공동연구</td>
<td>상대국명 :</td>
<td>상대국연구기관명 :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>위탁 연구</td>
<td>연구기관명 : 경북대학교</td>
<td>연구책임자 : 외 명 숙</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>요약(연구결과를 중심으로 개조식 500자 이내)</td>
<td>보고서 면수</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 저질량파, 항혈당효과를 보이면서도 다른 약제(Iovastatin)의 다른 간독성을 보이지 않음.
- 활성물질 3,4-DHPPA의 마우스에 대한 경구투여시 LD₃₀ 값은 2~5g/kg 사이에 존재함. L2018의 마우스에 대한 경구투여는 5g/kg 육량에서도 사망률, 일반증상 및 부작용에 있어 특성학적인 변화를 야기시키지 않았고, LDₙ₀값은 5g/kg 이상에 존재한 것으로 판단됨.
- 따라서 관련된 독성 투여를 완료하여 일부는 이미 등록되었으며, 식품의약 및 기능성식품의 개발 및 활용을 위한 산업 발전에 크게 기여할 것으로 예상됨.

<table>
<thead>
<tr>
<th>색인어</th>
<th>한글</th>
<th>영어</th>
</tr>
</thead>
<tbody>
<tr>
<td>5개 이상</td>
<td>글립파이오프로보노이드의 대사산물과 유도체, 고지혈증, 동맥경화, 약효검색, 작용기작</td>
<td>Metabolites and derivatives of Citrus Bioflavonoids, Hyperlipidemia, Atherosclerosis, Efficacy Test, Mechanism</td>
</tr>
</tbody>
</table>

- 3 -
여백
요 약 문

I. 제 목
Citrus Bioflavonoids 유도체 및 대사산물로부터 심장순환기질환 예방치료용 유용성물질의 개발

II. 연구개발의 목적 및 필요성

 연구개발의 목표 : Citrus Bioflavonoids 성체내 대사산물 및 함성유도체로부터 in vitro, in vivo 활성검색을 통해 2개 이상의 심장순환기질환 예방, 치료용 유용성물질의 개발

 연구개발의 필요성 : 최근 일본과 우리나라에서도 고지혈증 과 플레스테롤에 의한 여러 가지 성인병이 심각한 문제로 대두되고 있다. 최근 플레스테롤 저하 약제 등의 체내 작용 기전에 주목되는 여러 부작용을 해소하기 위해 각국에서 새로운 작용기전을 가진 플레스테롤저해제 개발이 시도되고 있으며, 국내에서도 식이요법과 사용될 고지혈증 개선용 기능성 식품개발에 주력하고 있다.

 연구결과는 서행 연구결과로부터 균류추출액, citrus bioflavonoids의 고지혈증 및 동맥경화증 예방, 치료 효과를 in vitro 동물실험 억제 검증을 통해 확인하였다. 그러나 그 활성을 나타내는 Bioflavonoids 가 in vitro 효과가에서는 활성률을 나타내지 않으나, 생물체에서 투여 후 고지혈증 및 동맥경화증에 대한 약효를 나타내며, 간조직의 지방전이 관련 효소의 활성을 억제한다. 한편 보고된 자료에 의하면 Citrus Bioflavonoids는 혈소판 후, 생체내 대사과정을 거쳐 빠르게 aglycon(hesperetin, naringenin 등)으로 전환되며, 이 aglycon들은 germ-free animal에서는 생성되지 않으며, 소장은 액체물질로 삼가시 이 물질의 생성이 완전히 억제된다. 따라서 baterially-generated aglycon 또는 그들의 대사산물이 혈소판 영구적 장력 및 항혈전증 효과를 나타낼 것으로 추측된다. 따라서 본 연구결과를 통해 Citrus Bioflavonoids 체내 대사산물 및 그 유도체의 약효 및 작용기작을 심혈관질환에 대상으로 종합적으로 규명하여 의약품 후보물질 도출하고자 하며, 이 물질들을 이용한 기능성 식품제조 및 개발을 확립하고자 한다.

III. 연구개발의 내용 및 범위

<table>
<thead>
<tr>
<th>구분</th>
<th>연구개발목표</th>
<th>연구개발내용 및 범위</th>
</tr>
</thead>
</table>
| 1차년도 (2000) | Bioflavonoids 생체내 대사산물의 심장순환기 예방치료 활성 평가 | - Bioflavonoids 생체내 대사산물 (10여개의 물질)의 in vitro 활성검색 및 소동물(토끼, 쥐, mouse)을 이용한 in vivo 효능 평가
- 심장순환기 예방치료 활성 작용기작 규명 |
| 2차년도 (2001) | Bioflavonoids 함성유도체의 심장순환기 예방치료 활성 평가 | - Bioflavonoids 유도체 함성(30개 이상)
- 함성유도체의 in vitro 활성검색 및 소동물(토끼, 쥐, mouse)을 이용한 in vivo 효능 평가
- 심장순환기 예방치료 활성 작용기작 규명 |
| 3차년도 (2002) | 최종 선별된 유용물질(2개 이상)의 in vivo 효능확립 및 시험품 개발 | - 소동물을 이용한 생체활성 유용물질의 in vivo 지질대사, 항혈전증의 효능 확립
- 선별된 생체활성 유용물질(대사산물 또는 함성유도체)의 독성 및 안전성 검정
- 선별된 생체활성 유용물질을 이용한 시험품 개발 |
Biologonoids 생체내 대사산물의 심장순환기 예방치료 활성 평가
- *In vitro* 및 *In vivo* 활성 검색을 위한 10여개의 Citrus flavonoids 생체내 대사산물 및 그 유사체를 확인하였음.
- Bioflavonoids 생체내 대사산물의 *in vitro* (LDL-oxidation, ACAT, HMG-CoA reductase) 활성 검색을 통해 *in vivo* 활성 평가를 위한 후보물질을 선별할 수 있음.
- 실험동물인 쥐를 대상으로는 혈중 지질 강하 효과를 평가하고, 토끼 및 LDLr-/- 마우스를 이용하여 희생적으로 동맥경화 예방 및 치료를 위한 지방선 촉적 역제 효과를 관찰하였으며, 부수적으로 지질 강하 효과도 관찰함. 대사산물 중 3,4-DHPPA와 p-HPPA는 현재 고지혈증 치료제로 사용되고 있는 lovastatin을 투여한 경우보다 낮은 지방선 혈착율을 보여 그 효능이 매우 뛰어난 불필요를 확인함.
- 혈장 콜레스테롤 농도저하는 간조직의 콜레스테롤 삼합성 조절효소인 HMG-CoA reductase의 활성 저하와 관련이 있는 것으로 평가됨. 대부분의 flavonoid 대사산물들은 혈장 콜레스테롤과 중성지질 수준을 동시에 저하시키는 것으로 나타나 혈장지질 강하 효능이 우수한 것으로 평가됨. 대사산물 중 특히 p-hydrobenzoic acid, hesperitin 및 3-methoxy-4-hydroxy cinnamate는 고지혈증 예방효과와 동맥경화 예방 기능을 동시에 지닌 것으로 사료됨. 간조직의 항산화효소의 활성도 분석 결과로부터 이들 대사산물의 항산화성이 인지되었음.

Bioflavonoids 항성유도체의 심장순환기 예방치료 활성 평가
- Hesperetin의 유도체 또는 citrus bioflavonoid 생체내 대사산물의 유도체 약 40종을 합성하였음.
- Citrus Bioflavonoids 항성유도체의 *in vitro* LDL-antioxidant 활성 검색 및 Spot test를 통해 2개의 항성유도체인 2018과 2024를 선별하였음.
- 1% 고콜레스테롤 식이를 준 NZW 토끼에 있어서 항동맥경화 효과를 검증한 결과, 대조군과 비교하여 2018 실험군에서 유의성 있게 43% 지방선 촉적이 감소된 양상을 나타내었으며, 2024 실험군은 대조군에 비해 8% 지방선 촉적이 감소된 양상을 나타내었음.
- SD계 수컷 흰쥐에 5주간 동안 고콜레스테롤 식이와 함께 투여하면서 혈중지질 강하 효과를 검증한 결과 혈중지질 강하효과가 우수하며, 2024 or 2018> probucol > hesperetin >> Lovastatin > control군의 순으로 평가되었음. Citrus Bioflavonoids 항성유도체 2018 및 2024는 혈중 지질 강하 효과 및 항동맥경화 효과가 있으며, 종합적으로 판단할 때 이 중 2018 화합물의 효과가 보다 우수함.

선별된 생체활성 유용물질의 희소 및 안전성 검정
- 시험물질 3,4-DHPPA의 마우스에 대한 단회 경구투여시 5 g/kg 용량에서 사망, 활동력 감소 및 위침각의 증증일 소견이 관찰되었으며, LD50값은 2~5g/kg 사이에 존재할 것으로 사료된다. I2018의 마우스에 대한 단회 경구투여는 5 g/kg 용량에서도 사망률, 일반증상 및 부검소견에 있어서 독성학적
인 변화를 야기 시키지 않았고 LD₃₀값은 5 g/kg 이상에 존재할 것으로 판단됨.

심장순환기 예방치료 활성 작용기작 규명
- Citrus flavonoids의 대사산물 및 유또체의 투여가 생체내 항산성 유지를 위해 클레스테롤 조절 효소인 ACAT, HMG-CoA reductase 활성을 억제하며, 따라서 생체내 클레스테롤 합성 역제 및 외부로부터 유입된 지질의 흡수를 저해 또는 LDL secretion의 기작을 통해 지질 강화 효과를 나타낸 것으로 예상되며, 혈장을 간조직에서의 지질과산화 생성 역제 효과를 통해 이들 대사산물의 항산화능이 인지되었음.
- 3,4-DHPPA는 동맥경화 마우스 모델 및 토끼 모델에서 동맥벽에 형성되는 지방산조의 면적을 감소시키는 효과가 있음을 알 수 있었고, 이는 동맥경화의 발생 초기에 단백구 세포가 동맥벽면에 부착하는 데 관여하는 vascular cell adhesion molecule-1(VCAM-1)의 발현을 억제함을 알 수 있었다. 즉, 3,4-DHPPA의 표적 단백질 중 하나가 VCAM-1임을 알 수 있음.
- L2018과 L2024의 지질강하 및 항동맥경화를 토끼 및 동맥경화모델마우스에 검증하였으며, L2018은 항동맥경화가 매우 우수함을 확인하였고, LDL항산화능이 뛰어난 2024는 지질강하 효과를 나타내었고. 고콜레스테롤 식이(HCHF)가 공급된 생쥐 그룹으로부터 채취된 소량 혈장으로부터 지방단백질 분리 후 그 프로필을 조사하여, 혈중 클레스테롤의 증가 양상과 유사한 지방단백질 및 아포지장단백질의 증가 양상을 확인하였다. 혈액내의 지방단백질 분리 및 아포지장단백질 발견량에 미치는 양상을 조사한 결과, 3,4-DHPPA와 L2024가 대조군(lovasatina)과 비교하여 HDL의 일자크기가 유지되며, apoA-I의 발현이 증가하는 등의 두려운 지방단백 대사 개선효과를 보였음.

선별된 생체활성 유용물질 및 시험도 조성물의 효능 검정
- Bioflavonoid 대사산물 및 항산화유도체를 이용한 시험도 조성물의 효능을 평가하기 위하여, 동맥경화모델 마우스 및 토끼에 이용하여 검증하였음.
- 1차년도와 2차년도에서 선별된 유용물질을 이용한 시험도 조성물을 급여한 결과 혈장 중 클레스테롤 농도저하하는 간조직의 클레스테롤 생합성 조절효소인 HMG-CoA reductase와 ACAT 활성을 저해하여 관진물을 확인하였으며, 동맥벽변 평형 역제능도 뚜렷함을 알 수 있음.
- 기능성 혼합 조성물들은 혈장과 간조직의 클레스테롤과 중성지질 수준을 동시에 저하시키지지점지하 효능이 상승되는 것으로 평가되었음.
- 기능성 혼합 조성물들의 브로은 혈장과 간조직의 과산화물 지시점 수준을 유의적으로 억제하는 것으로 평가됨.
- 3,4-DHPPA는 전반적으로 혈청지장단백질에 영향을 미치지 않았음을 알 수 있으며. 현재 PPAR-α agonist로 알려진 finofibrate는 기존에 알려진 작용기전과 마찬가지로 혈장지장단백의 개선효과가 뛰어나며, 특히 HDL-cholesterol의 항합을 증가시키는 효과가 있음을 알 수 있었다.
- L2018과 L2024의 지질강하 및 항동맥경화를 토끼 및 동맥경화모델마우스에 검증하였으며, L2018은 항동맥경화가 매우 우수함을 확인하였고, LDL-항산화능이 뛰어난 2024는 지질강하 효과를 나타내었음.
- 1차년도와 2차년도에서 선별된 유용물질을 이용한 시제품 조성품(Ferulic acid + PHBA, Ferulic acid + 2024, 2024 + 2018, 2024 + PHBA)을 급여한 결과 혈장 중 콜레스테롤 농도저하는 간조직의 콜레스테롤 복합성 조절효소인 HMG-CoA reductase와 ACAT 활성도 저해와 관련된을 확인하였다. 기능성 혼합 조성물들은 혈장과 간조직의 콜레스테롤과 중성지질 수준을 동시에 저하시켜 지질지하 효능이 상승되는 것으로 평가되었다. 기능성 혼합 조성물들의 보충은 혈장과 간조직의 과산화지질 수준을 유의적으로 억제하는 것으로 평가되었음.

V. 연구개발결과의 활용계획
- 생물자원 확보 및 이용기술 환상으로 국가경쟁력 강화
- 향후 한국인의 고지혈증 예방 및 치료제 개발의 기초자료로 유용하게 활용가능함.
- 유용물질의 고지혈증, 동맥경화 예방, 치료 효과의 과학적인 규명을 통해 차세대 의약품 개발분야에 활용
- 본 연구결과를 기반으로 하여 개발된 기술은 산업체제의 기술이전
- 기능성 식품 및 건강식품 개발을 위한 신물질 탐색의 저속된 양상을 도모함
- 심혈관계 질환 관련 예방물질의 국내 신약개발로 인한 수입내내효과 및 수출에 의한 의약품 무역 확대
- 유용물질을 포함하는 심혈관계 질환 예방용 의약식품(medical food), 기능성 식품(functional food), 보조식품(dietary supplement) 개발을 위한 새로운 item 창출로 신산업군 창출 가능 및 산업화에 활용
SUMMARY

I. Subject: Development of Bioactive Substances for Prevention and Treatment of Cardiovascular Diseases from Derivatives or Metabolic Products of Citrus Bioflavonoids

II. Purpose and Objectives

Cardiovascular diseases occupy 30-40% of overall mortality rate. Hyperlipidaemia and atherosclerosis are accounted for major risk factors of coronary heart disease, a leading cause of death. The worldwide market scale of medicines for cardiovascular disease reaches to 50 billion dollars yearly. Despite increased detection and treatment of hypertension and hyperlipidaemia, incidence of atherosclerotic disease remains high. Many medicines for hypercholesterolemia and atherosclerosis have been developed but they are very expensive and must be taken carefully with a doctor's prescription due to the possible side effects and so forth.

Flavonoids have exhibited a variety of biological and pharmacological activities as proved by many laboratories. A number of epidemiological studies have implied a role for flavonoid in reducing the risk of coronary heart disease. Our lab. previously reported the cholesterol-lowering activity of certain flavonoids. It is still unclear whether all flavonoids derivatives share these properties. This work is to establish *in vitro* and *in vivo* efficacy and to investigate mechanism of lipid-lowering and antiatherosclerotic actions of citrus bioflavonoid, its metabolites, and synthetic derivatives.

The specific objective is to develop bioactive substances for prevention and treatment of cardiovascular diseases, hyperlipidemia and atherosclerosis, from derivatives or metabolic products of citrus bioflavonoids.

III. Scope of the Study

<table>
<thead>
<tr>
<th>Year</th>
<th>Objective</th>
<th>Methods & Research Contents</th>
</tr>
</thead>
</table>
| 2000 | *In vitro* and *in vivo* efficacy test of the metabolic products of citrus flavonoids for prevention and treatment of cardiovascular disease | - *In vitro* screening for the metabolic products of citrus flavonoids
- *In vivo* efficacy test for the metabolic products of citrus flavonoids using animal models (rabbit, rat, mouse)
- Mechanism studies for the metabolic products of citrus flavonoids |
| 2001 | *In vitro* and *in vivo* efficacy test of the synthetic derivatives for prevention and treatment of cardiovascular disease | - Synthesis of citrus flavonoids derivatives
- *In vitro* screening for synthetic derivatives
- *In vivo* efficacy test for synthetic derivatives using animal models (rabbit, rat, mouse)
- Mechanism studies for synthetic derivatives |
| 2001 | Establishment of *in vivo* efficacy of the selected bioactive substances and development of a pilot model(a trial products) | - Establishment of *in vivo* efficacy of the selected bioactive substances for cholesterol lowering and antiatherosclerosis using animal models
- Toxicity test of the selected bioactive substances
- Development of a pilot model for the selected bioactive substances |
IV. Results

1. *In vivo* efficacy of citrus flavonoids metabolites and synthetic derivatives of citrus flavonoids were evaluated in high cholesterol-fed rats, rabbits, and mice.

2. The citrus flavonoids metabolite, 3,4-DHPPA, exhibit the cholesterol-lowering action in high cholesterol diet fed rats. Plasma cholesterol-lowering action was induced by the inhibition of HMG-CoA reductase that regulates cholesterol biosynthesis. Most of flavonoid metabolites lowered the concentration of plasma cholesterol and triglyceride simultaneously. Among flavonoid metabolites tested, p-hydrobenzoic acid, hesperitin and 3-methoxy-4-hydroxy cinnamate seemed to express preventive effect on hyperlipidemia as well as that of atherosclerosis. These compounds exhibited antioxidant activity in hepatic tissues.

3. The anti-atherogenic effect of 3,4-DHPPA in rabbit and LDL receptor-deficient mice are involved with the decreased hepatic ACAT activity, the inhibition of LDL-oxidation, the up-regulation of apoA-1, and the down-regulation of VCAM-1 gene expression.

4. The synthetic derivatives of citrus flavonoids, 2018 and 2024, exhibit the cholesterol-lowering action in high cholesterol diet fed rats. It was suggested that lowering of plasma cholesterol concentration by compounds tested, 2024 and 2018, was resulted from inhibition of hepatic HMG-CoA reductase and partly from lower ACAT activity. Synthetic bioflavonoid derivatives, 2018 and 2014, lowered plasma cholesterol and triglyceride simultaneously. Thus, they seemed to be very effective in lowering plasma lipids. Supplementation of 2024 and 2018 induced to increase in HDL-cholesterol concentration whereas they decreased atherogenic index. This suggests that 2024 and 2018 are antiatherogenic. Supplementation of 2024 and 2018 resulted in increase of catalase activity among hepatic antioxidant enzymes that might lead to reduce the hepatic lipid peroxides formation.

5. The anti-atherogenic effect of synthetic derivatives of citrus flavonoids, 2018 and 2024, in rabbit and LDL receptor-deficient mice are involved with the decreased hepatic ACAT activity, the inhibition of LDL-oxidation, the up-regulation of apoA-1.

6. Functional compounds selected from the 1st and 2nd year were mixed to test the effectiveness of plasma lipid-lowering. The mixed formulation tested were ferulic acid + PHBA, Ferulic acid + 2024, 2024 + 2018, and 2024 + PHBA. The mixed functional compounds are effective for plasma cholesterol-lowering, inhibition of HMG-CoA reductase, and ACAT. The mixed functional compounds lowered cholesterol and triglyceride levels in plasma as well as in liver. Plasma and hepatic lipid peroxidation levels were reduced by supplementation of these mixed compounds.

V. Application Plan of the Results

- To use as basic research data for prevention and treatment of hyperlipidemia and atherosclerosis in Korean in furture

- Citrus flavonoids metabolites and synthetic derivatives can be utilized for development of the functional foods or nutraceuticals for prevention of cardiovascular diseases. By applying these bioactive substances to human clinical test, they can be reevaluated for human use.
CONTENTS

Chapter 1. Summary of Research ... 15

Chapter 2. Overview of Research Development in the World and Korea 18

Chapter 3. Contents and Results .. 22

Chapter 4. Achievement and Contribution of the Research 76

Chapter 5. Application Plan of the Results .. 79

Chapter 6. Information of International Scientific Research 80

Chapter 7. References ... 83

A Consignment Research .. 89
여백
목차

제 1 장 연구개발과제의 개요 .. 15

제 2 장 국내외 기술개발 현황 .. 18

제 3 장 연구개발수행 내용 및 결과 .. 22
 1. 연구개발수행 내용 및 방법 .. 22
 2. 연구개발수행 결과 .. 36

제 4 장 목표달성도 및 관련분야에의 기여도 .. 76

제 5 장 연구개발결과의 활용 계획 .. 79

제 6 장 연구개발과정에서 수집한 해외과학기술정보 ... 80

제 7 장 참고문헌 .. 83

위탁연구과제 .. 89
여백
제 1 장 연구개발과제의 개요

본래 인류는 질병의 예방, 치료분야에 수 천년 전부터 식물 및 동물자원 등 농산자원을 유용하게 이 용해 왔으나, 현대문명의 발달과 더불어 대부분이 사양의 계약회사에 의해 화합물이용으로 대체되 었다. 그러나 이러한 화합성성체의 부작용이 문제시되면서 질병의 치료 및 예방자원에서 건강식품 성 분이나 가능성 식품섭취에 관심을 모으고 있다. 더욱이 최근 각국에서는 식이요법과 함께 사용될 지 질저기능을 가진 생리활성 물질을 탐색하거나 합성하는데 주력하고 있으며, 그 중 bioflavonoids의 생물학적 활성, 약리적 효과 및 의학적 이용에 대한 연구가 활발히 진행되고 있다. 또한 국내산 천연 자원을 이용한 가능성 식품의 판매 또는 약제개발이 확대되고 있는 경향을 볼 때 본 연구를 통한 고 지혈증 개선을 위한 가능성 제품개발이 성공적으로 수행된다면, 향후 한국의 고지혈증 예방 및 치료에 유용하게 사용될 것으로 기대된다. 또한 이를 기반으로 우리 가능성 식품산업은 국가 경쟁력 있 는 산업으로 발전시키는데 공헌할 것으로 전망됨.

우리나라는 오래전부터 동의보감 등에서 볼 수 있듯이 생약성분을 약용식물로 이용한 민간요법이 개발되어 왔으며, 동의보감이나 동의수체본에 수재된 생약이나 처방을 신체복화 할 경우에는 임상 실험이 명시되는 이점을 바탕으로, 문헌을 통해 한국 고유식품의 생약이용 자료를 조사함으로써 시간 적, 경제적으로 신체를 개발할 수 있음.

최근 급격하게 발전한 생명과학과 산업화로 사회 구성원 중 고령인구의 증가와 함께 소득향상에 따 른 식단의 고지방, 고탄수화물화로 인해 발초혈관 및 뇌혈관 순환장애에 인한 각종 성인병에 대한 관심이 높아지고 있음. 심장마비, 고혈압, 황달성, 뇌졸중 등의 심혈관질환은 전체 사망률의 30%를 차 지하며 사망률 18%의 약과 더불어 가장 큰 만성 성인병으로 현재 난간 40조원 이상의 세계의약품시장을 보유하고 있음.

일반적으로 사용하는 심장순환기계 치료제(Angiotensin converting enzyme(ACE) inhibitor, HMG-CoA reductase inhibitor)는 대부분이 합성의약품으로 고가이며, 장기간 복용시 부작용으로 인해 효과면에서 한계성을 드러내고 있음. 따라서 국제경쟁력을 높이기 위하여 새로운 대사경로를 이용한 생화학적 기초 지식을 바탕으로 복합식품에 기초한 심장순환기계 질환의 원인과 발생작용을 연구하고 이에 관여하는 효소나 수용체 등을 선택적으로 억제하는 방법을 도입하여 신약개발을 시도하고 있음.

Bioflavonoid류는 다양한 생리기능을 가지는 물질로 생체에서 항공계, 항암제, 항산화제 등의 기능을 나타내며, 항산화제 기능으로는 oxygen free radical scavenging 작용에 관여함(Chen et al., 1990, Fraga et al., 1987, Limasset et al., 1993). 이와 같은 여러 가지 측면에서 인체의 건강에 유익한 성질을 지닌 bioflavonoid는 식품에서 생합성되지 않기 때문에 반드시 외부로부터 섭취를 해야만 하고, 과당 복용시에도 유독성을 없는 것으로 알려져 있음.

최근 클레스테롤 저하 물질 등의 체내 작용기전에 수반되는 여러 부작용을 해소하기 위해 각국에서 새로운 작용기전을 가진 cholesterol lowering agent의 개발이 시도되고 있다. 이와 관련하여, 민간요법 으로 사용되는 천연물(식물)로부터 추출한 화합물에 대해 고지혈증 개선효과를 검색하여, 이를 건강증
전용 가능성식품 또는 치료제로 개발할 경우 그 부작용이나 위험도를 줄일 수 있으리라 생각됨.
지난 4년간 본 연구전에 의해 감귤피 추출물과 Citrus Bioflavonoids가 생체내 대사를 통해 HMG-CoA reductase와 ACAT 활성을 억제하며 혈중지질을 저하시키고, 혈관내벽의 macrophage 침윤을 억제하여 foam cell의 형성을 억제으로써 동맥경화증 예방 및 치료 효과가 있음을 동물실험(토끼)을 통해 확인하여 3개의 미국특허를 등록하였음. 따라서 본 연구에서는 Citrus Bioflavonoids가 \textit{in vitro} 효소계에서는 활성을 나타내지 않으나, 생물체에 투여 후 고지혈증 및 동맥경화증에 대한 약효를 나타낸다는 사실로부터 제2대 대사산물 및 그 유도체의 작용기작을 실험동물을 대상으로 종합적으로 규명하여 의약품 후보물질로 도출하고자 하며, 결핵의 치료 및 예방차원에서 건강식품 성분이나 기능성 식품심취에 대한 관심이 고조됨에 따라, 이 물질들을 이용한 기능성 식품제조 및 개발을 확대하고자 했음.

최근 국내에서는 nutriceuticals 개발이 대기업(제일제당, 대상, 롯데, 동원산업) 부설연구소를 중심으로 활발히 진행되고 있으며, BioMax, 유진사이언스 등 신장순환기질환 치료제 전문 벤처기업의 창업으로, Pharmasol 등 외국기업의 국내 진출을 억제함과 동시에 국내 기술력의 향상 위한 관련연구개발의 필요성이 더욱 절실히 요구되고 있는 실정임.

또한 실험관계 절환에 대한 예방물질의 국내 신약개발로 상당한 수입대체효과 또한 아니라, 기능성 식품 및 건강보조식품으로서의 개발가능성을 제시할 수 있을 것으로 사료되며, 이러한 활성성분의 산업화는 보다 유용하게 전개될 수 있을 것으로 전망됨.

각국에서는 식이요법과 함께 사용될 지침지하기능을 가진 생리활성 물질을 탐색하거나 합성하는데 주력하고 있으며, 그 중 bioflavonoids의 생물학적 활성, 약리적 효과 및 의학적 이용에 대한 연구가 활발히 진행되고 있음. 또한 국내산 천연차를 이용한 기능성 식품의 판매 또는 약제개발이 확대되고 있는 경향을 볼 때 본 연구를 통한 고지혈증 개선을 위한 기능성 제품개발이 성공적으로 수행된다면, 향후 한국인의 고지혈증 예방 및 치료에 유용하게 사용될 것으로 기대되며, 또한 이를 기반으로 우리나라의 식품의약(Nutriceuticals) 산업을 국가 경쟁력있는 산업으로 발전시키는데 공헌할 것으로 전망됨.

○ 기술적 측면
- 국내 천연물자료의 발전을 바탕으로 새로운 생리활성물질 탐색 및 식물재배개발 기술 확립
- Bioflavonoids 생체내 대사산물 및 유도체에 대상으로 \textit{in vitro} 효소 평가방법 및 신장순환기 예방치료 활성 작용기작 규명을 위한 생화학적, 분자생물학적 기반기술의 확립
- 신약개발을 위한 분야별 공동연구를 통해 관련연구기술의 활용기반 마련
- 과학적으로 생리활성이 입증된 식품 소재를 사용한 기능성 식품의 공급을 통해 대사질환 예방과 치료에 큰 효과를 나타낼 것으로 기대됨
- 국내에서 자체 기술력에 의한 기능성 식품의 제조기술 개발 필요
- 국민소득의 향상, 건강증진 식품에 대한 관심의 증가 및 식품화 변화 등으로 식품 소비구조는 건강지
향성과 편의성 위주로 전환되어 가고 있어 기능성 식품소재를 이용한 질병 예방 및 질병완화를 위한 기능성 식품과 건강보조식품의 개발은 국민건강 증진과 식품산업의 활성화를 위해 필요함
- 최근 식생활의 서구화에 따라 우리 국민의 질병발생 양상도 현진국형으로 바뀌어 가고 있어 심혈관질환의 발병율이 크게 증가되고 있으므로 식생활을 통해 이를 예방 및 치료할 수 있는 방법이 요구되며, 따라서 과학적으로 생리활성이 입증된 기능성 소재는 대사질환 예방과 치료에 큰 효과를 나타낼 것으로 기대됨

○ 경제·산업적 측면
- 신규 식품화한 기술 치료제의 개발로 의약산업 및 신규 식품의약산업 창출
- 신진국이 개발한 식품함기는 질병에 대한 수입대체 및 수출시장의 개척을 통한 외화 확득 기반 마련
- 관련 유용물질복합, 용도복합, 제조복합을 통한 산업재생권 확보
- 키친플러 백신강아지 및 기능성을 추구한 다양한 제품들이 질병의 예방, 치료분야에 적극 이용될 것으로 예상되어 대규모의 기능성 식품 시장의 형성 전망
- 고소득 시대에 접어들면서 국민의 건강과 장수에 대한 관심이 고조되고 이에 부응하여 과학적으로 그 기능을 규정된 기능성 식품에 대한 개발이 증가되고 있어 향후 그 수요는 더욱 증가할 것으로 생각됨. 현재 국내의 경우 기능성 식품과 연관된 건강 보조 식품은 120 개사에서 800여 종 이상 생산되고 있는 것으로 나타나 있으며, 약 1천억여원의 시장규모를 형성하고 있는데 시장규모는 연간 약 200%씩 성장하고 있는 추세임. 따라서 앞으로는 건강지킴 및 기능성을 추구한 다양한 제품들이 질병의 예방, 치료분야에 적극 이용될 것으로 예상되어 장래 대규모의 기능성 시장을 형성할 것으로 전망함
- 심혈관질환의 대사를 개선할 수 있는 기능성 소재 개발을 통해 국내 식품산업을 활성화시키고 기능성 소재를 외국에 수출함으로써 외화 획득을 가능하게 할 수 있음

○ 사회·문화적 측면
- 사회구성원 중 고령인구 증가와 식생활변화에 기인한 식품소비기대 증가에 따른 국내기술 신약개발의 필요성 대두
- 건강은 물론 심혈관질환 환자들이 일상식품으로서 상용할 수 있는 생리활성을 얻을 수 있는 기능성 식품의 개발로 국민영양과 보건증진에 기여
- 국민생활수준의 향상에 따른 식생활의 다양화, 고급화에 부응할 수 있는 다양한 기능성식품의 개발 요구
- 현대 식생활문화는 국민소득상승, 학가족화 및 여성의 사회참여 증가에 따라 식품 소비구조가 다양화, 고급화 및 편의화는 방향으로 바뀌어 가고 있으며 이러한 변화는 기능성식품가공 산업의 발달과 함께 가속화될 전망임
제 2 장 국내외 기술개발 현황

- 최근 급격하게 발전한 생명과학과와 산업화로 사회 구성원 중 고령인구의 증가와 함께 소득향상에 따른 식단의 고지방, 고단수화물화로 인해 만성질환 및 심혈관 순환장해로 인한 각종 성인병에 대한 관심이 높아지고 있음. 심장마비, 고혈압, 동맥경화, 뇌졸중 등의 심혈관질환은 전체 사망률의 30%를 차지하며 사망률 18%의 임과 더불어 가장 큰 반성 성인병으로 현재 연간 40조원 이상의 세계의약품시장을 보유하고 있다.

- 일반적으로 사용하는 심장순환기에 치료제는 대부분이 장기간 복용시 부작용으로 인해 효과면에서 한계성을 드러내고 있음. 따라서 국제경쟁력을 높이기 위하여 새로운 대사경로에 대한 생화학적 기초식을 바탕으로 분자생물학에 기초한 심장순환기 질환의 원인과 발병작용을 연구하고 이에 편안히 하는 호소나 수용제 등을 선택적으로 역제하는 방법을 도입하여 신약개발을 시도하고 있다.

- 현재 사용하는 동맥경화 치료제 연구는 LDL-cholesterol 강하제, HDL-cholesterol 조절제, 혈관벽에 작용하는 약물 연구 분야로 집중되어 있으며, 현재 사용되고 있는 여러 개발의 약물보다 약효 및 부작용 측면에서 향상된 약물의 국내 연구결과에 의한 개발이 점점히 요구되고 있다.

- 동맥경화의 발병원인 및 진행에 관한 생화학적, 분자생물학적 연구가 활발히 진행되어지고 있다. 형질변화 기술을 이용한 마우스 동맥경화 모델을 도입한 이후 콜레스테롤 저하시키는 염소내 대사에 관련된 기전 및 관련된 면역, 생리학적 메개물질들에 관한 연구가 활발히 이루어져 동맥경화의 발생기전에 대한 이해가 이루어지고 있으며, 이를 바탕으로 새로운 치료제의 개발에 초점이 맞추어져 있다. 그러나 아직까지 만족스러운 효능을 가진 동맥경화 치료제가 개발되지 못했고, 기존의 항산화제, 콜레스테롤 생산억제제 등을 대체할 수 있는 신약의 개발에 치열한 경쟁을 벌이고 있다.

- 2000년 전세계 의약품 시장 추경치는 3,709억불로 1999년 3,372억불에 비해 10% 증가율을 보였다. 전세계에서 개발중인 혁신적인 신약품 수가 증가하고 있고, 개발 속도 또한 빨라지고 있기 때문에 의약품 시장의 성장은 계속 지속될 전망이다. 항후 5년간 세계 의약품 시장은 연평균 약 8%의 증가 추세를 보일 것으로 예상되며 2004년에는 5천억불이 넘을 것으로 추산되고 있다. 약효구별 2000년 의약품 매출규모(총 2,216억불)를 보면, 상위 3대 약 효구인 심혈관계, 종주신경계, 소화 및 대사계 메수물 전체의 50%를 차지하고 있고, 가장 큰 약효구는 신혈관계로서 428억불로 점유율 19.3%, 증가율 8%로 나타났다. 1997년의 국내 고혈압치료제의 총 생산실적은 약 316억원으로 1996년의 268억원에 비해 약 17.8% 증가하여 총의약품 생산실적이 전년대비 9% 증가한 것에 비하여 고지혈증 치료제는 생산액이 크게 증가한 것으로 나타났다. 최근 우리나라에서 식생활의 서구화로 고지혈증을 비롯한 이상질환 중 환자가 급속히 증가하고 있으며, 이러한 질환의 증가는 동맥경화성 심장질환을 증가시키고, 이로 인한 사망률이 증가되고 있다. 고지혈증 치료 약물의 원료는 대부분 수입에 의존하는 상태이므로, 국내 기술력을 이용한 화학적인 약이 개발될 경우 엄청난 의약누출을 방지할 수 있다.

- 과학기술이 진보함에 따라 천연물 또는 식품에 함유되어 있는 각종 성분들이 분석되고 그 효능과 작용기전들이 연구되고 있으며, 그 결과 성인병과 천연물 또는 식품 성분과의 판계가 규명되고 있다. 또
한 이를 이용한 각종 “약 같은 기능성 식품”의 개발이 활발히 추진되고 있다. 약제와는 구별되어 뉴트라슈티스(nutraceuticals)나 파마푸드(pharmafood), 보조식품(food supplement) 등 여러 가지 이름으로 불리고 있는 기능성식품(functional food)은 사람의 질병치료나 건강에 보조역할 또는 도움을 주는 식품이나 음료를 총칭하는 의미로 사용되고 있다. 이러한 기능성식품 분야의 연구가 가장 활발한 국가는 일본이며, 최근 우리나라와 유럽도 상당수의 기능성식품 특허를 보유하고 있는 것으로 보고되었다.

하려 국내에서 시판되고 있는 소위 기능성식품은 구성하는 식재료에 근거하거나, 일부 설계품에 근거하는 등의 과학적 근거가 미약한 실정이다. 최근 한국식품개발연구원이 조사한 우리나라와 미국, 일본 등의 선진국 기능성식품 관련 기술을 비교하면 우리나라의 기술수준은 대체적으로 선진국의 20-60% 수준인 것으로 평가받아 있다. 따라서 기능성식품의 정부차원의 관리체계가 갖추어져야 하며, 이와함께 우수적으로 생리활성을 나타내는 성분의 분리, 분석과 더불어 기능성 소재의 유효성과 작용 기전에 대한 연구가 요구된다.

작자는 고콜레스테롤혈증을 예방 및 치료하는 목적뿐만 아니라 약제가 인체에 미치는 여러 부작용을 해소하기 위해 식품 또는 천연물로부터 새로운 작용기전을 가진 다양한 식물성 추출물과 기능성 물질의 탐색이 수행되어 왔다. 그중 과일의 레보노드드 성분은 체내에서 강력한 항산화계 역할을 하며 심혈관질환뿐만 아니라 패절환을 예방하는 역할을 하며, “오마가-3 지방산”은 본토인 심장과 순환계 유지에 도움을 주는것으로 보고되었다. 반면에, 기능성 식품에 대한 시장성장에서 세계적으로 선순위를 얹고 있는 식품 전문가 “베테놀(Ben eco)”은 최근 한국시장 진출을 도모하여 한국의 전략적 협력회사인 ‘라이지오 케이 Balea’를 설립하였다. 베테놀은 소나무 특성에서 추출한 자연항응제 withanolide를 저하 기능을 나타내는 에스테르화 형태로 전환시킨 물질로 임상시험을 통해 2주간에 LDL cholesterol을 14%, 혈장 총콜레스테롤을 10% 감소시킬 수 있는 것으로 보고되었다. 미국 식품의약품안전청(FDA)으로부터 혈액관류관절의 예방능력을 지닌 식품의약기에 공식 인증을 받은 베테놀은 기능성 영양식료, 요구료 등 다이어트식품, 마가린과 치즈 등 유제품, 초코렛 및 과자, 유수 및 클라와 같은 식음료에 콜레스테롤 저하로 널리 퍼져갈 수 있다. 기능성 식물성성분을 이용한 또 다른 제품으로 캐나다의 Forbes Medi-Tech사가 개발한 ReducoTM을 들 수 있는데, 미국의 Altus Food사는 Reduco를 사용하여 Take Heart하는 심장질환을 축소하였으며, 이 상품은 아침식사용 시리얼, snack bars, 과일쥬스 등 다양한 종류로 구성되어있다.

국내에서는 인건 1000억원대를 벚도는 콜레스테롤 저하혈질 시장은 잦기 위한 업계들은 경쟁이 치열하다. 현재 콜레스테롤을 낮추는 식품을 개발하였거나 제품개발을 목표로 연구를 추진중인 바이오업체는 모두 10여개에 이르고 있다. (주)에스앤피코리아는 최근 달래바 박.당귀 등 8종의 생약을 주성분으로 한 콜레스테롤 저하 조성물질을 개발, 국내는 물론 미국과 유럽 등지에 특허를 출원했다. 한편, 한국식품개발연구원 실험실 배성을 기업인 (주)구프(buugo)_도 오가파와 구기자 등 10여개 천연생약제에서 추출한 식물성 ‘콜스톡’을 이용하여 콜레스테롤 저하에 ‘콜스톡’을 출시한 바 있다. 이들 연구진은 콜스톡에 대한 동물실험과 복용 후 결과 콜레스테롤이 16% 낮아진 반면, HDL 콜레스테롤은 22% 상승되었다고 밝혔다. 또한 바이오텍스는 감귤껍질에서 추출한 콜레스테롤 저하물질 JBB-1을
‘리드플’이란 상품명으로 판매하고 있으며, 보다 효능이 개선된 신제품인 ‘언볼’을 출시하였고, 의약품 개발을 목표로 한 NG-5006이라는 신제품의 임상시험 중에 있다. 식품성 스테롤은 콜레스테롤의 혈
수를 정상적으로 억제하여 스테롤을 대량을 통해 인체로부터 배출하도록 하는데, 국내에서도 콜레
스테롤 혈중 농도와 관계한 기능성을 가진 콜레스테롤 혈중량을 줄이기 위한 “콜레스테롤”이 유전
적인 기능을 억제하는 콜레스테롤 조절기능으로 명명한 ‘콜레스테롤’이라는 용
어를 쓰였다.

- 한편, 최근 다양한 분야의 약학 연구자들의 관심을 모아 있고 항후 계통적인 연구대상이 될 flavonoid는 다양한 기능성을 가진 화합물로 diphenylpropane (C6-C3-C6)을 기본 화학구조로 지난
페놀성 화합물의 총칭이다. 인간이 섭취하는 식품 중에 주로 포함된 flavonoids는 크게 flavonols, proanthocyanidins, isoﬂavones, ﬂavones, ﬂavanones 및 ﬂavanonols 등의 5종류로 구분된다. Flavonoid 또는 bioflavonoid는 식물의 단단색 또는 노란색 색소와합물로서 수용성이며, 식물의 모든 기관, 특히 뿌리 양에 존재하지만 감귤류 과일이나 닭과채소, 견과류, 식물의 부리, 껍질, 갈절, 차 및 포
도주 등에도 널리 분포하고 있는데, 천연물로서 자연계에 약 4,000여종이 존재하며 왕학적 효과 및 약리학적
효과를 나타내는 것으로 알려져 있다. Flavonoid는 유리상태 (aglycone) 또는 주로
glucose, rhamnose 등의 당과 결합된 백당체 (glycoside) 형태로 존재하는데, 사람이 하루에 섭취하는
flavonoid 양은 약 1 g 정도로 추정된다.

- Flavonoids는 자유기인에 의한 조직손상으로 유발되는 만성 퇴행성질환에 대해 박양한 보호작용을 하는 항산화제로 떨어지는 vitamin C 또는 vitamin E의 항산화능을 높이기도 한다. Polyphenolic flavonoid는
LDL 과산화의 역제 및 연쇄적 세포독성에 매우 효과적이며, flavonoid 섭취량과 CHD 사망률간에
는 역상관 관계가 보고되어 왔다. 한편 동물실험에서 녹차 polyphenol로 혈중 LDL-콜레스테롤을 낮추는 반면 HDL-콜레스테롤은 유의적으로 증가시키며, 콜레스테롤 저하 및 동맥경화 역해효과를 나타내는 것으로 보고되었다. 최근 본 연구팀을 포함하여 국내에서 감귤류 bioflavonoid의 생리기능에 대한
연구가 활발히 진행되고 있는데, 이 중 hesperidin과 naringin은 혈중 총성지질 저하, LDL-콜레스테롤
저하 및 HDL-콜레스테롤 증가를 보였다. 이들 citrus bioflavonoid들은 현저한 혈중 지질저하효과를 나타내는 것으로 보고되었으며, 동맥경화 관련 인자로 동맥내 VCAM-1과 MCP-1의 발현이 억제되었음을 보고한 바 있다. 또한 Canada의 John P. Robarts Research Institute에서도 naringenin의
macrophage foam cell 형성 억제 및 apoB secretion 억제 활성을 보고한 바 있다.

- Citrus bioflavonoids로부터 순환기질환 예방, 치료용 식품의약 개발
본 연구과제의 결과는 여러가지 약리활성 중에서도 특히 HMG-CoA reductase 저해제, ACAT 저해제, 동맥병변 생성 역제제로서 hesperidin, naringin 및 이들의 생체내 대사산물 및 유도체를 용용하고자 하
는 것으로 고지혈증 및 동맥경화를 예방, 치료하고자 하는 전략으로 1996년에 한국 특허 출원을 시작으
로, 곧이어 미국, 유럽 등에 다수의 특허를 출원하여 현재 미국특허 9건 동물, 유럽특허 1건 동물 대한민
국특허 14건 동물, 20여건의 국내,외 특허가 출원 중이며, 13편의 SCI 논문과 3편의 국내 논문 및 5건의
해외학회 발표를 하였다.
감귤류의 피부, 감귤류의 시트러스 및 과피에서 추출한 Bioflavonoids를 고용해서, 혈액, 혈청에서 혈청성과 혈소포 (HMG-CoA reductase inhibition and ACAT inhibition)를 낮추는 것을 발견하였다. 마우스 및 토끼에 있어서의 항응고효과 효과는 naringin이 가진 클레스테롤 저하작용보다 적은 편이 더욱 현저하게 나타났으며, 이들 bioflavonoids 및 그 유도체들은 혈중지질 지로 낮추는 효과와 무관한, 독립적인 항응고성효과가 있으며, 이는 바로 macrophage의 침윤 (Infiltration)을 억제하여 foam cell의 형성을 막고 vascular cell adhesion molecule-1 (VCAM-1)과 monocytic chemotactic protein-1 (MCP-1)의 발현을 억제하는 기전을 통해 항응고성 효과를 보일을 알 수 있었다. 이러한 효과를 보이면서도 다른 약제(lovastatin)와는 달리 간독성을 보이지 않았음을 알 수 있었다. 또한 naringin은 혈중유방알제의 발현과 혈중세포 과정을 유발하는 NF-κB의 발현을 억제하여 혈관 평활근세포의 증식을 억제함으로써 동맥성형술 후의 재협착을 방지하는 효과를 보여 추후 실제 임상적인 효과가 기대된다. 이에 본 연구진은 개발된 “JBB-1 기술과 관련된 특허 및 이를 이용한 건강식품 및 의약품 생산기술”을 벤처기업인 (주)BioMax에 기술이전하여 (2000. 5), 기능성식품으로 생산, 판매되고 있으며, 이는 국내 의약품 분야, 식품의약 및 기능성식품의 개발 및 실용화를 위한 산업 발전에 크게 기여한 것으로 평가된다.
제 3 장 연구개발수행 내용 및 결과

제 1 절 연구개발수행 내용 및 방법

생물 연구결과로부터 과거추출액, citrus bioflavonoids의 고지혈증 및 동맥경화증 예방, 치료 효과를 in vivo 동물실험 약효 검증을 통해 확인하였다. 그러나 그 활성을 나타내는 Bioflavonoids가 in vitro 효소계에서는 활성을 나타내지 않으나, 생물체에 투여 후 고지혈증 및 동맥경화증에 대한 약효를 나타내며, 간조직의 지방내과 관련 효소의 활성을 억제한다. 허브 보고된 자료에 의하면 Citrus Bioflavonoids는 흡수된 후, 생체내 대사과정을 거쳐 빠르게 aglycon(hesperetin, naringenin 등)으로 전환되며, 이 aglycon들은 germ-free animal에서는 생성되지 않으며, 소장을 항생물질로 살아가는 이 물질의 생성이 완전히 억제 된다 (Griffiths and Barrow: Biochem. J. 130:1161-1162, 1972). 따라서 baterially-generated aglycon 또는 그들의 대사산물이 흡수되어 항고지혈 및 항동맥경화 효과를 나타낼 것으로 추측된다. 따라서 본 연구과제를 통해 Citrus Bioflavonoids 채내 대사산물 및 그 유도체의 약효 및 작용기작을 실험동물을 대상으로 종합적으로 규명하여 의약품 후보물질을 도출하고자 하며, 이 물질들을 이용한 기능성 식품제조 및 개발을 확립하고자 하였다.

가. 최종목표

Citrus Bioflavonoids 생체내 대사산물 및 합성유도체로부터 in vitro, in vivo 활성검색을 통해

2 개 이상의 심장순환기 질환 예방, 치료용 유용물질의 개발

나. 연차별 연구개발목표 및 연구개발내용

<table>
<thead>
<tr>
<th>구분</th>
<th>연구개발목표</th>
<th>연구개발내용 및 성과</th>
</tr>
</thead>
<tbody>
<tr>
<td>1차년도</td>
<td>Bioflavonoids 생체내 대사산물의 심장순환기 예방치료 활성 평가</td>
<td>- Bioflavonoids 생체내 대사산물 (10 개종의 물질)의 in vitro 활성검색 및 소동물(토끼, 쥐, mouse)을 이용한 in vivo 효능 평가</td>
</tr>
<tr>
<td>(2000)</td>
<td></td>
<td>- 심장순환기 예방치료 활성 작용기작 규명</td>
</tr>
<tr>
<td>2차년도</td>
<td>Bioflavonoids 합성유도체의 심장순환기 예방치료 활성 평가</td>
<td>- Bioflavonoids 유도체 합성 (30 개 이상)</td>
</tr>
<tr>
<td>(2001)</td>
<td></td>
<td>- 합성유도체의 in vitro 활성검색 및 소동물(토끼, 쥐, mouse)을 이용한 in vivo 효능 평가</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 심장순환기 예방치료 활성 작용기작 규명</td>
</tr>
<tr>
<td>3차년도</td>
<td>최종 선별된 유용물질(2 개 이상)의 in vitro 효능확립 및 시제품 개발</td>
<td>- 소동물을 이용한 생체활성 유용물질의 in vivo 지질대사, 항동맥경화의 효능 확립</td>
</tr>
<tr>
<td>(2002)</td>
<td></td>
<td>- 선별된 생체활성 유용물질(대사산물 또는 합성유도체)의 독성 및 안전성 검정</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 선별된 생체활성 유용물질을 이용한 시제품 개발</td>
</tr>
</tbody>
</table>
1) Citrus Bioflavonoids-생장내 대시산물의 in vitro 활성 검색

1-1) LDL-oxidation 분석

- 사람 혈청으로부터 초음파분리기를 이용하여 췌장형성성 저산백절인 LDL의 분리

혈액원에서 가져온 plasma에 0.04% EDTA, 0.05% NaN₃, 0.015% PMSF를 넣어 plasma에 있는 저산백절의 변성을 막는다. 100,000 g, 4℃에서 20 시간 동안 초음파분리한다. Top layer에 있는 chylomicron과 VLDL을 겉내고 다음과 같은 식에 의해 NaBr(heavy density solution)을 이용해서 밀도를 1.063 g/ml로 맞춘다.

\[V_2 = V_1 \times \frac{D - D_1}{D_2 - D} \]

\[V_2: \text{volume of heavy density solution; } V_1: \text{initial volume of solution; } D: \text{required density(1.063)} \]
\[D_1: \text{original density; } D_2: \text{density of heavy solution(1.04)} \]

다시 100,000 g, 4℃에서 24 시간동안 초음파분리한 후 yellow top layer에 분리된 LDL을 겉낸다. 이 LDL을 10 mM, pH 7.4 phosphate-buffered saline(PBS)으로 투석하여 고농도의 NaBr를 제거하고, 4℃에서 보관하면서 약 5 주간 사용하였다.

- TBA method에 의한 LDL oxidation의 분석

Cu²⁺-mediated LDL-oxation을 유발시키고 이때 생성된 불포화지방산의 산화산물인 dialdehyde를 TBA(thiobarbituric acid)법으로 측정하였다. 항산화 활성을 측정하고자 하는 합성시료를 DMSO를 이용하여 적당한 농도로 용해하였다. 시료용액 10 μl, 시료의 혈액으로부터 초음파분리기를 이용해 분리한 LDL 50 μl(50-100 μg protein), 10 mM, pH 7.4 phosphate-buffered saline(PBS) 180 μl를 혼합한 후에 0.25 mM CuSO₄ 10 μl을 첨가함으로써 반응을 시작하였다. 37℃에서 4 시간 동안 반응시킨 후, 20% trichloroacetic acid(TCA) 용액 1 ml을 첨가하여 반응을 중단시켰다. 0.05 N NaOH 용액에 녹인 0.67% thiobarbituric acid(TBA) 1 ml을 첨가하고 교반한 후, 발색반응이 일어나도록 95℃에서 15 분간 가열하고 얼음물에 널가하였다. 3,000 rpm에서 15 분 동안 원심분리한 후, 상층액의 흡광도를 540 nm에서 측정하여 생성된 malondialdehyde(MDA)의 양을 계산하였다. Tetramethoxypropane의 지장용액을 이용하여 250 μl PBS 용액에 0-10 nmol MDA를 포함하는 표준용액을 만들어서 위와 같은 방법으로 가열하여 MDA의 생성표준 곡선을 그린다.

1-2) Hepatic microsomal enzyme의 활성 분석

- Liver microsome의 분리
AcyI-CoA:cholesterol acyltransferase (ACAT) 또는 HMG-CoA reductase 효소원으로는 토끼의 간조직을 분리하여 생리시험수로 세척하고 4배 용량의 완충액 A (0.25 M sucrose, 1 mM EDTA, 0.01 M Tris, pH 7.4)를 가한 다음 ice bath에서 Teflon homogenizer로 균질화하였다. 균질액을 14,000 x g에서 15 분간 원심분리하여 상층액을 얻은 후 100,000 x g에서 1시간동안 초원심분리하였다. 이 침전물을 완충액 B (0.25 M sucrose, 0.01 M Tris, pH 7.4)로 수세하고 분쇄시킨 후 1시간동안 100,000 x g에서 다시 초원심분리를 행하였다. 2차로 얻은 침전물을 4 ml의 완충액 B에 현탁시킨 후 bovine serum albumin을 표준단백질로 사용하여 Lowry와 Rosebrough 방법에 따라 단백질을 결정하고 단백질 농도가 8~10 mg/ml 가 되도록 희석하여 200 μl씩 분획한 후 -80℃ 냉동고에 보관하면서 사용하였다.

- Hepatic ACAT의 활성 측정

ACAT 활성의 측정은 [14C] oleoyl-CoA를 기질로 하여 Brecher & Chan의 방법을 일부 수정하여 사용하였다. 10 μl 발효 상층액, 4.0 μl microsomal enzyme, 20.0 μl assay buffer (0.5 M KH2PO4, 10 mM DTT, pH 7.4), 40 mg/ml BSA (지방산이 제거된 것, Sigma A6003) 15.0 μl, 20 mg/ml cholesterol 2.0 μl, 41.0 μl H2O를 가하여 37℃에서 15분간 에回避반응시켰다. 이 반응액에 [14C] oleoyl-CoA (0.02 μCi, 최종농도 10 μM) 8 μl을 척가하여 다시 37℃에서 15분간 반응시킨 후 isopropanol-heptane (4:1; v/v) 1 ml을 가하여 반응을 정지시키고, heptane 0.6 ml과 5배로 희석한 assay buffer 0.4 ml을 척가한 후 원심분리를 행하였다. 효소활성의 측정은 원심분리하여 얻은 상층액 100 μl에 scintillation cocktail (Lipotuma, Lumac Co.) 4 ml를 척가한 후 liquid scintillation counter를 이용하여 radioactivity를 측정하였다.

- Hepatic HMG-CoA reductase 활성도 측정

분리한 microsome은 Bradford 방법(1976)을 이용하여 단백질 정량 (100~200 μg protein/10μl)한 후 [14C]HMG-CoA를 기질로 한 Shapiro 등(1974)의 방법을 수정 보완하여 HMG-CoA reductase 활성도를 측정하였다. Microsome 10 μg를 500 nmol NADPH와 50 nmol [14C]HMG-CoA(specific activity : 5,6980 cpm/m mole)에 혼합하여 전체 반응부피를 60 μl로 하여 37℃에서 15분간 반응시켰다. 이 과정에서 cholesterol 생성성의 조절반응인 HMG-CoA의 mevalonate로의 전환이 일어나는데 반응부피의 ¼에 해당하는 10 N HCl을 가하여 15분 후 반응을 종료시킨다. 반응 종료된 혼합액을 10,000 x g에서 5분간 원심분리하여 상층액을 Silica gel 60 F254 TLC plate에 점착하여 benzene:acetone(1 : 1, v/v) 용액에서 전체 시키고 mevalonate standard과 비교하여 Phospho Image Analyzer (MacBas 1000, Fuji)로 확인 후 그 위치의 band를 관람 Scintillation counter (Packard Tricarb 1600 TR, Packard, Australia)로 방사선 활성을 측정하였다. 활성도 단위는 microsome 단백질 1 mg이 반응시간 1분당 생성하는 mevalonate양을 pmole로 나타내었다(pmole mevalonate formed/min/mg · microsomal protein).

2) Citrus flavonoids 세제 대사산물의 토끼를 이용한 활성 검색

- 24 -
2-1) 실험동물
- 토끼실험: 체중 2.0-2.5 kg의 건강한 New Zealand White 수컷 토끼에게 1% 콜레스테롤 첨가 토끼용 고형사료 (RC4 diet, Oriental Yeast Co., Japan)와 citrus bioflavonoids 대사산물을 투여하여 항동맥경화 효과를 검정한다 (표 1).

<table>
<thead>
<tr>
<th>실험군</th>
<th>마리수</th>
<th>투여기간</th>
<th>급여 내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>1군</td>
<td>10</td>
<td>8 주</td>
<td>1% 콜레스테롤 (대조군)</td>
</tr>
<tr>
<td>2군</td>
<td>"</td>
<td>"</td>
<td>1% 콜레스테롤 + Lovastatin (1 mg/kg)</td>
</tr>
<tr>
<td>3군</td>
<td>"</td>
<td>"</td>
<td>1% 콜레스테롤 + Hesperetin (0.05%,wt/wt)</td>
</tr>
<tr>
<td>4군</td>
<td>"</td>
<td>"</td>
<td>1% 콜레스테롤 + a-HPPA (0.05%,wt/wt)</td>
</tr>
<tr>
<td>5군</td>
<td>"</td>
<td>"</td>
<td>1% 콜레스테롤 + 3-Methoxy-4-HPPA (0.05%,wt/wt)</td>
</tr>
<tr>
<td>6군</td>
<td>"</td>
<td>"</td>
<td>1% 콜레스테롤 + Naringenin (0.05%,wt/wt)</td>
</tr>
<tr>
<td>7군</td>
<td>"</td>
<td>"</td>
<td>1% 콜레스테롤 + p-HPPA (0.05%,wt/wt)</td>
</tr>
<tr>
<td>8군</td>
<td>"</td>
<td>"</td>
<td>1% 콜레스테롤 + 3,4-DHPPA (0.05%,wt/wt)</td>
</tr>
</tbody>
</table>

2-2) 대동맥내 지방선 분석
실험종료 후 토끼의 흉장을 철거하여 흉부동맥을 절취한 다음 PBS buffer (pH 7.2)로 옮겨 동맥외막 주변부의 지방을 제거하고, 중측방향으로 절개하여 1~3번째 녹간동맥의 부위를 절취하여 분자생물학적 분석과 조직학적 분석에 사용하였고, 3~8번째 사이부위를 대상으로 하여 지방선 염색을 시행하였다. 염색 방법은 propylene glycol로 각각 2분석 3회 수세하고 propylene glycol에 녹인 Oil Red O (ORO) 염색용액으로 옮겨 30분간 염색한 다음, 85% propylene glycol로 각각 3분석 2회 수세하여 염색된 염색액을 제거하고, 생리식염수로 1회 세척한 후 촬영하여 염색진 사진을 이용하여 염색된 부위를 tracing하고 화상분석기 (Image Pro 4.0, USA)로 단위 대동맥 면적에 대한 염색부위 (지방선 부위의 비율 (%))를 계산하여 각 실험군간의 차이를 분석하였다.

2-3) 혈액화합분석
실험종료 후 thiopental (25 mg/kg)을 투여하여 토끼를 마취시키고 혈액정맥을 적단하여 혈액을 절취하여 항응고제 (EDTA)가 처리된 용기로 옮겨 3,000 rpm에서 15분간 원심분리하여 상층부의 혈장을 분리하여 분석할 때까지 저온냉동고에 보관하였다가 glutamate-oxalate-transferase (GOT), glutamate-pyruvate-transferase (GPT), total cholesterol (TC), triglyceride (TG) 및 high density lipoprotein (HDL)용 측정사약을 이용하여 혈액화학분석기 (CIBA Corning 550 Express, USA)로 직접 측정하였다.
2-4) 조직학적 관찰

토끼의 장기와 조직에 대한 무역물질의 영향을 조사하기 위하여 부검시 심장, 패, 간, 신장, 부신, 비장 및 근육 등을 절개하여 특이소견의 유무를 확인한 다음 2~3배례 녹간동맥 부위를 포함하여 10% 중성 포로탈린에 넣어 24시간 이상 고정시킨 후, 흐르는 물로 충분히 수세하고 70%, 80%, 90% 및 100% 알코올을 이용하여 단계적으로 할수시킨 다음 paraffin 부과과정을 거쳐 포메기 (SHANDON, Histocentre 2, USA)로 포매하였다. 포매된 조직은 박질편기 (LEICA, RM2045, Germany)로 약 4 μm의 두께로 조직절편을 제작하여 H & E (Hematoxylin & eosin) 염색을 하고 xylene으로 투명화 시켜 봉입하고 광학현미경으로 관찰하였다.

2-5) 분자생물학적 분석

통장관과 관련인자들의 분자생물학적 분석을 시행하기 위하여 토끼의 1~2배례 녹간동맥 부분을 사용하였다. 동맥은 절개 후 논바로 RNA 추출용 시약 (Trizol, Gibco-Brl)으로 넣어 homogenization을 한 다음 단백질을 제거하고 ethanol로 precipitation시켜 RNase free-용액에 용해하여 RT-PCR을 시행하였다. RT는 Oligo dt primer과 M-MLV revers transcriptase를 이용하여 수행하였으며, 통장관과 관련인자들에 대한 PCR을 시행하여 각각의 인자들에 최적의 반응조건을 확립하였다.

표 2. 통장관화 관련 인자의 RT-PCR용 primer 및 반응조건

<table>
<thead>
<tr>
<th>Factors</th>
<th>Primer sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sense</td>
</tr>
<tr>
<td>VLDLR</td>
<td>5'-GGTCAGACTGGGGTGAAACA-3'</td>
</tr>
<tr>
<td>LRP</td>
<td>5'-GCCAGAGATCGACGGCACC-3'</td>
</tr>
<tr>
<td>SR</td>
<td>5'-TCCITCAAGCTGCACCTAATGC-3'</td>
</tr>
<tr>
<td>VCAM-1</td>
<td>5'-GAACACTCTTACCTGTCACAGC-3'</td>
</tr>
<tr>
<td>MCP-1</td>
<td>5'-GTTCTCTGCGAAGCCTTCTGGCC-3'</td>
</tr>
<tr>
<td>GAPDH</td>
<td>5'-GGCGCTGTCACCAGGGCTGCTT-3'</td>
</tr>
</tbody>
</table>

3) 혈관관련 모델동물인 유전자 적중모델동물을 이용한 naringin 및 그 계내 대사산물에 대한 항통장관화 활성 검색

3-1) 동물모델

모델동물로는 본 연구소에 이미 확보되어 있는-현재 세계적으로 개발된 모델 동물 중 인체의 동맥
경화증과 가장 유사한 병변을 가진다는 low density lipoprotein receptor (LDLR) 유전자 절제 동물을 사용하였다. LDLR 유전자는 동맥경화증의 원인이 되는 lipoprotein을 수용하는 수용체를 편차하는 유전자로서 이를 knockout시켜 혈증에 콜레스테롤 및 각종 lipoprotein들이 증가하여 폐쇄경화증을 형성하게 되며, 이렇게 만들어진 low density lipoprotein receptor knockout mouse는 동맥경화증을 연구하는데 좋은 모델이 된다.

본 연구소의 SPF(Specific Pathogen Free) 동물 사육 시설을 사용하였으며, 실험동물의 사육환경은 온도 21±2°C, 습도 55±5%로 유지하며, 발암을 12시간 주기로 조절하여 사육하였다. 콜레스테롤 씨여시에는 1% cholesterol이 첨가된 사료를 사용하였다. 실험을 위한 시료처리군과 대조군은 다음과 같이 배치하였다. 실험에 사용한 동물은 8 주령의 homozygotic ldlr+- 30 마리를 사용하였다.

- 대조군 6 마리(female); 고지질 식이
- Lovastatin 투여군 6 마리(female); 고지질 식이 + 1 mg/kg Lovastatin
- Naringin 투여군 6 마리(female); 고지질 식이 + 0.1% wt/wt diet
- Naringenin 투여군 6 마리(female); 고지질 식이 + 0.1% wt/wt diet
- p-HPPA 투여군 6 마리(female); 고지질 식이 + 0.1% wt/wt diet

3-2) 혈액화학 분석
모든 실험 동물에서 retro-orbital puncture를 실시하여 혈액을 채취한 후 분리한 혈장내의 총 혈증 콜레스테롤, triglyceride, 고밀도지단백질(HDL)의 양을 측정하였다. 총 혈증콜레스테롤 및 triglyceride, HDL : 혈액자동분석기(CIVA-Corning®)를 통해서 측정하였다. 본 실험실의 혈액자동분석기는 실험동물인 마우스의 혈청으로 표준치가 설정되어 있다.

3-3) 혈액동맥내 지방선 분석 및 조직학적 관찰
각 실험군을 8 주간 고폴레스테롤 식이 및 시료를 함유한 콜레스테롤 식이를 실시한 후 회생시켜 심장 및 오름혈관부터 혈증동맥까지 체외하여 포르말린에 고정한다. 고정된 심장과 오름혈관의 일부를 1시간 정도 생리식염수에 방치하여 심근 및 혈관 평활근을 이완시킨 후 4% 포르말린이 함유된 생리식염수에서 48시간 동안 고정한다. 고정된 심장은 5% gelatin에서 2.5시간, 10%에서 2.5시간, 25% gelatin에서 12시간 방치한 뒤 4°C에서 경화시킨다. 경화된 심장을 면도칼로 잘 trimming한 뒤 OCT compound에 embedding하여 deep freezer에서 동결시킨 후 대동맥부를 동결절편기로 10μm의 두께로 냉라 슬라이드를 제작한다. 지방염색을 위하여 슬라이드를 증류수에 담겼다가 50% 에탄올에 1-2분 담근 다음 포화 sudan IV 용액에서 30분간 염색한 후 50% 에탄올로 세척하고 hematoxylin으로 대조염색을 실시한 후 수성 봉입제로 봉입하여 광학현미경으로 관찰한다. 폐쇄경화판의 면적이 카메라가 달린 Nikon-FX Ag 광학현미경을 사용하여 현미경상을 모니터에 나타낸 후 image measure soft ware를 이용하여 면적을 측정하여 평가한다.
4) Rat를 이용한 Bioflavonoids 대사산물의 고지혈증 및 치료기능 검정

<table>
<thead>
<tr>
<th>연구범위</th>
<th>연구수행방법 (이론적·실험적 접근방법)</th>
<th>구체적인 내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>동물사육 실험</td>
<td>동물 사육</td>
<td>① 실험동물: SD계 수컷 환쥐
② 실험군: 대조군: 1% high cholesterol diet (HC) Lovastatin군: HC + 0.02% lovastatin 시험물질군: HC+시험물질(동일수준의 mol %를 보충)
③ 시험물질: naringenin, p-HPPA, p-hydrobenzoic acid, hesperetin, o-HPPA, m-HPPEA, 3,4-DHPPA, 3-methoxy-4-HIPPEA
④ 사육기간: 5주</td>
</tr>
<tr>
<td>시료 수집</td>
<td>① 혈액채취 후 혈장분리
② 장기조직 및 본변 수집</td>
<td></td>
</tr>
<tr>
<td>생체시료 분석</td>
<td>간특성 테스트를 통한 bioflavonoids의 안전성 확인</td>
<td>혈장 GGT, GPT 측정: 분석 Kit 사용
간조직 중의 항산화효소 활성도 및 혈장과 조직 중의 지질과산화상태 투준 측정
① SOD 활성: pyrogallol의 자동산화 억제정도를 측정
② CAT 활성: 기질 H₂O₂ 감소정도 측정
③ GSH-Px 활성: 산화형 GSH이 GSH reducata와 NADPH에 의하여 환원될 때 NADPH의 홍평도 감소정도 측정
④ TBARS 농도: lipid peroxide와 TBA의 반응성물인 MDA농도 측정</td>
</tr>
<tr>
<td>시험물질이 지질대사변화에 미치는 영향 분석</td>
<td>혈장 및 조직 중의 지질농도</td>
<td>① 혈장 및 조직 TC, TG 농도: 효소법
② 혈장 HDL-C 농도: 효소법</td>
</tr>
<tr>
<td>간조직 중의 콤플레스테롤 절감효소</td>
<td>① HMG-CoA reductase 활성: [14C]HMG-CoA을 기질로 하여 생성된 mevalonate 측정
② ACAT 활성: [14C]Oleoyl-CoA를 기질로 하여 생성된 cholesteryl oleate 측정</td>
<td></td>
</tr>
<tr>
<td>본변 중의 sterol 함량</td>
<td>① Neutral sterol: GC법
② Acidic sterol: 효소법</td>
<td></td>
</tr>
</tbody>
</table>

5) Citrus Bioflavonoids 유도체의 합성 : Hesperetin의 유도체 또는 citrus bioflavonoid 생체내 대사산물의 유도체 약 40 종을 합성

여기에서,
R¹은 R² 또는 R³CO- 그룹이고,
R²는 치환되지 않거나 1개 이상의 C₁-C₃ alkyl, OH, Cl 또는 NO₂로 치환된 폐닐기로 치환된 C₂-C₅ alkyl 그룹; 치환되지 않거나 1개 이상의 C₁-C₃ alkyl, OH, Cl 또는 NO₂로 치환된 나프탈기가 치환된 C₁-C₅ alkyl 그룹; 또는 C₁₀-C₃₈ alkyl 또는 alkenyl 그룹이고, R³은 C₁₀-C₃₈ alkyl 또는 alkenyl 그룹이다.
R₁는 H, OH, C₆₋₁₀ alkoxy 그룹이고;
R₂는 H, C₆₋₁₀ alkyl, 1 내지 3개의 치환기를 갖는 OH, alkoxy,
carboxy, phenyl로 치환된 C₈₋₁₀ cycloalkyl 그룹이다.

6) Citrus Bioflavonoids 합성유도체의 in vitro 활성 검색
(위(1-1)와 같은 방법으로 실험함)

7) Citrus Bioflavonoids 합성 유도체에 대한 Spot Test
Citrus Bioflavonoids 합성 유도체들(약 40 종)을 동물에 투여하여 생체내 지질대사(total cholesterol)
에 미치는 영향을 단기간에 걸쳐 검증하여 향후 고지혈증 및 동맥경화와 같은 성인병 예방 및 치료용
in vivo 활성결과용 후보물질을 보다 신속하게 탐색하고자 하였다.

<table>
<thead>
<tr>
<th>동물실험 (8주령 C57BL/6j mice; 각군당 n = 5)</th>
<th>혈액분석</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25% cholesterol diet (대조군)</td>
<td></td>
</tr>
<tr>
<td>1.25% cholesterol diet + Lovastatin (0.05% wt/wt diet)</td>
<td></td>
</tr>
<tr>
<td>1.25% cholesterol diet + Citrus bioflavonoids 합성유도체 (0.05% wt/wt diet)</td>
<td>Total cholesterol</td>
</tr>
</tbody>
</table>

8) Citrus flavonoids 합성유도체의 토크를 이용한 활성 검색

8-1) 실험등록
- 토크실험: 제중 2.0~2.5 kg의 건강한 New Zealand White 수컷 토크에 1% 콜레스테롤 점가 토크
용 고형사료 (RC4 diet, Oriental Yeast Co., Japan)와 citrus bioflavonoids 합성유도체를 투여하여 항동맥
경화 효과를 검증한다 (표 3).

표 3. Citrus bioflavonoids 합성유도체의 항동맥경화 활성검정용 토크 실험군

<table>
<thead>
<tr>
<th>실험군</th>
<th>마리수</th>
<th>투여기간</th>
<th>급 이 내 용</th>
</tr>
</thead>
<tbody>
<tr>
<td>1군</td>
<td>10 두</td>
<td>8 주</td>
<td>1% 콜레스테롤 (대조군)</td>
</tr>
<tr>
<td>2군</td>
<td>"</td>
<td>"</td>
<td>1% 콜레스테롤 + Lovastatin (1 mg/kg)</td>
</tr>
<tr>
<td>3군</td>
<td>"</td>
<td>"</td>
<td>1% 콜레스테롤 + Hesperetin (0.025% wt/wt diet)</td>
</tr>
<tr>
<td>4군</td>
<td>"</td>
<td>"</td>
<td>1% 콜레스테롤 + L2018 (0.025% wt/wt diet)</td>
</tr>
<tr>
<td>5군</td>
<td>"</td>
<td>"</td>
<td>1% 콜레스테롤 + L2024 (0.025% wt/wt diet)</td>
</tr>
</tbody>
</table>
8-2) 대동맥내 지방산 분석, 혈액화학분석, 조직학적 관찰, Hepatic microsomal enzyme의 활성 분석
(위에 언급한 것과 같은 방법을 사용)

8-3) FPLC를 이용한 혈장 lipoprotein profile 분석

- Equipment and materials: The FPLC system (Pharmacia LKB) consisted of a single Superose 6HR 10/30 column, one P-920 pump, a UPC-900 detector, a INV-907 injection valve into a 200-μl loop, a Frac-900 fraction collector.

- Equilibrium Buffers: The column was equilibrated in 50 mM phosphate-buffered saline (PBS, containing 0.1 M NaCl, 0.02% NaN₃, and 0.001 M EDTA, pH 7.4).

- FPLC conditions (Elution buffer): Sample volume: 200 μl; Elution buffer: a phosphate-buffered saline solution containing 0.01% EDTA and 0.02% NaN₃; Flow rate: 0.5 ml/min; Fraction: 1.0 ml/Fr. 샘플 분리하여, 40분내에 lipoprotein profile 분리가 완료됨. 각 Fr.의 Total cholesterol(TC)와 Triglyceride(TG)를 분석.

- Total-cholesterol 정량: 혈장 중에 있는 콜레스테롤 정량은 Allain 등(1974)의 enzymatic method에 따라 측정용 시약(아산 제약 kit)을 사용하였다. Ester형 cholesterol로부터 전환된 유리콜레스테롤을 cholesterol oxidase에 의해 Δ⁴-cholestenol로 전환시키고 phenol과 4-amino-antipyrine에 의해 적색으로 발색시켜 492 nm(Beckman 650 spectrophotometer)에서 흡광도를 측정하여 콜레스테롤 표준액 (300 mg/dl)과 비교하여 농도를 계산하였다.

- Triglyceride 정량: 중성지방의 농도는 McGowan 등(1983)의 착색법 원리에 의해 중성지방 측정용 시약(아산 제약 kit)을 사용하였다. Lipoprotein lipase를 이용하여 중성지방과 glycerol로 분해시킨 후 glycerol kinase와 glycerocephospho oxidase 첨가로 H₂O₂를 발생시킨다. 여기에 peroxidase 첨가로 발색 시킨 후 550 nm에서 흡광도를 읽은 다음 클리세율 표준액(300 mg/dl)과 비교하여 농도를 계산하였다.

8-4) 동물혈청을 대상으로 지단백질 및 아포지단백질 분석기술

- 동물혈청의 지단백질 및 콜레스테롤, 중성지방 프로필 분석: 유의적인 효능을 보인 실험군의 혈청을
수집하여 콜레스테롤 농도와 HDL-콜레스테롤 농도, 중성지방의 농도를 측정하고 (Sigma Kit 사용), KBr로 밀도를 조정한 후 72시간의 초음파분리기를 통해 VLDL, LDL, HDL의 순으로 지단백질을 분리하여, 신화가 얻어진 조건에서 전체 이프지단백질의 농도와 콜레스테롤농도를 정량하고, 병행실험으로 대조군의 혈장은 같은 방법으로 측정하여 비교한다.
- 지단백질간의 크기 비교 (VLDL, LDL, HDL) : 각각 분리된 대조군과 실험군의 VLDL, LDL, HDL을 1.5% agarose gel에 적용하여 일정 전압으로 전개시키고 후 gel을 건조하여 coomassie blue로 염색하여 이동성의 차이를 비교한다.
- HDL 입자를 구성하는 apoA-I의 분자수 비교 : apoA-I은 HDL을 구성하는 대표단백질이며, 동맥경화가 진행되면서 HDL입자를 구성하는 apoA-I의 개수가 감소하는 것으로 보고되었기 때문이다 (1). 따라서 본 연구에서는 이러한 기작을 확인하기 위해 대조군과 실험군의 HDL에 crosslinker인 BS3 (Bissulfosuccinimidyl suberate)를 적용한 후, SDS-PAGE로 반응물을 분리하여 HDL입자량 apoA-I의 수를 비교한다.
 - HDL2와 HDL3의 조성 비교 및 LpA-II 정량 : 고지혈증이 진행되면서 HDL을 구성하는 HDL2 (d1.063-1.25)의 비율이 HDL3 (d1.25-1.21)에 비하여 감소하며, 병변이 개선되면서 그 비율이 다시 증가하는 것으로 보고되어 있다. 대조군과 실험군의 HDL을 native gel 상에서 일정 전류를 주어 전개시키고 coomassie blue로 염색하면 크기와 밀도조성의 차이에 따른 이동성의 차이를 파악할 수 있다. 그리고 그 결과 단백질을 PVDF membrane에 옮겨 apoA-I 항체 혹은 apoA-II 항체를 대상으로 Western blot을 실시하면 apoA-I의 구성이 우세한 HDL (LpA-I) 혹은 apoA-II가 우세한 HDL (LpA-II)의 증가여부를 비교할 수 있다.

9) Citrus flavonoids 협성유도체의 쥵를 이용한 활성 검침

Bioflavonoid 협성유도체의 지질여부 개선효과를 HMG-CoA reductase inhibitor인 lovastatin 및 항산화 효과 측정 콜레스테롤 저하제인 probucol과 비교・견중하고 심혈관질환 개선 후보물질의 in vivo 효능과 생체기를 알차적으로 규명한다.

- 혈장과 간조직 중의 지질수준 저하효과 분석
- 콜레스테롤 조절효소 및 스테롤 분석을 통한 대사기전 규명
- Bioflavonoid 협성유도체의 in vivo 항산화능 검토
표 4. Citrus bioflavonoids 함성유도체의 항동맥경화 활성검정용 쥐(Rat) 실험군

<table>
<thead>
<tr>
<th>실험군</th>
<th>마리수</th>
<th>투여기간</th>
<th>급여 내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>1군</td>
<td>10 대</td>
<td>6 주</td>
<td>1% cholesterol diet (대조군)</td>
</tr>
<tr>
<td>2군</td>
<td>"</td>
<td>"</td>
<td>1% cholesterol + 0.02% Lovastatin</td>
</tr>
<tr>
<td>3군</td>
<td>"</td>
<td>"</td>
<td>1% cholesterol + 0.02% Probufol</td>
</tr>
<tr>
<td>4군</td>
<td>"</td>
<td>"</td>
<td>1% cholesterol + 0.02% (or 0.0661 mol%) Hesperetin (Mwt: 302.3)</td>
</tr>
<tr>
<td>5군</td>
<td>"</td>
<td>"</td>
<td>1% cholesterol + 0.032% (or 0.0661 mol%) 2024 (Mwt: 484.58)</td>
</tr>
<tr>
<td>6군</td>
<td>"</td>
<td>"</td>
<td>1% cholesterol + 0.031% (or 0.0661 mol%) 2018 (Mwt: 470.6)</td>
</tr>
</tbody>
</table>

10) Bioflavonoids 대사산물과 함성유도체로부터 효능이 우수한 유용물질 선별

1차년도와 2차년도 연구결과를 통해 선별된 유용물질(3,4-DHPPA, L2018, L2024)에 대한 in vivo 지질 대사, 항동맥경화의 효능 확립, 작용기작 규명, 특성 및 안전성 검정 및 시제품 개발을 추진하며, 개발된 기능성 시제품의 효능을 재검정한다. 즉, 부유물과 함께 존재하는 이들 flavonoid 대사산물과 함성유도체의 투여에 의한 지질대사 개선효과를 표준물질과 비교·검증하고 실험관찰결과 개선용 시제품의 유용성을 최종적으로 규명하고자 하였다.

11) 혈청질환 모델동물인 유전자의 동물모델을 이용한 선별된 유용물질의 in vivo 지질 대사, 항동맥경화의 효능 및 작용기작 규명

11-1) 동물모델 (3-1과 같은)

- 대조군 10 마리 (female); 고지질 식이
- Lovastatin 투여군 10 마리 (female); 고지질 식이 + 1 mg/kg Lovastatin
- Fenofibrate 투여군 10 마리 (female); 고지질 식이 + 0.1% wt/wt diet
- L2018 투여군 10 마리 (female); 고지질 식이 + 0.1% wt/wt diet
- L2024 투여군 10 마리 (female); 고지질 식이 + 0.1% wt/wt diet

11-2) 혈액화학 분석

모든 실험 동물에서 retro-orbital puncture를 실시하여 혈액을 채취한 후 분리한 혈장내의 총 혈중 폴리스테롤, triglyceride, 고폴리시탄백질(HDL)의 양을 측정하였다. 총 혈중폴리스테롤 및 triglyceride, HDL : 혈액자동분석기(CIVA-Corning®)를 통해서 측정하였다. 본 실험실의 혈액자동분석기는 실험동물인 마우스의 혈청으로 표준치가 설정되어 있다.

11-3) 혈액디변나 지방산 분석 및 조직학적 판찰 (3-3과 같은)
12) Bioflavonoids 대사산물과 합성유도체를 이용한 시험품 조성물의 고혈압증 예방 및 치료 가능

13-1) 식이섭취량, 제품증가량 및 장기 무게에 미치는 영향
13-2) 혈장의 지질변수에 미치는 영향
13-3) 간조직의 지질수준에 미치는 영향
13-4) 간특성에 미치는 영향
13-5) 콜레스테롤 조절효소 활성에 미치는 영향
13-6) 혈장과 간조직 중의 TBARS 농도에 미치는 영향
13-7) 간조직 중의 항산화효소 활성에 미치는 영향

표 5. Citrus bioflavonoids 합성유도체의 항동맥경화 활성검정용 쥐(Rat) 실험군

<table>
<thead>
<tr>
<th>실험군</th>
<th>마리수</th>
<th>투여기간</th>
<th>내용 내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>1군</td>
<td>10 대</td>
<td>6 주</td>
<td>1% cholesterol diet (대조군)</td>
</tr>
<tr>
<td>2군</td>
<td>"</td>
<td>"</td>
<td>1% cholesterol + 0.02% (or 0.0735 mol%) Naringenin(Mwt : 272.3)</td>
</tr>
<tr>
<td>3군</td>
<td>"</td>
<td>"</td>
<td>1% cholesterol + 0.02% (or 0.0661 mol%) Hesperedin(Mwt : 302.3)</td>
</tr>
<tr>
<td>4군</td>
<td>"</td>
<td>"</td>
<td>1% cholesterol + 0.02% [Ferulic acid(0.0367mol%) + PHBA(0.0367mol%)]</td>
</tr>
<tr>
<td>5군</td>
<td>"</td>
<td>"</td>
<td>1% cholesterol + 0.02% [Ferulic acid(0.0367mol%) + 2024(0.033mol%)]</td>
</tr>
<tr>
<td>6군</td>
<td>"</td>
<td>"</td>
<td>1% cholesterol + 0.03% [2024(0.033mol%) + 2018(0.033mol%)]</td>
</tr>
<tr>
<td>7군</td>
<td>"</td>
<td>"</td>
<td>1% cholesterol + 0.03% [2024(0.033mol%) + PHBA(0.0367mol%)]</td>
</tr>
</tbody>
</table>

Ferulic acid : 3-methoxy-4-hydroxycinnamate; PHBA : p-hydrobenzoic acid.

13) 선택된 생체 용용무질의 독성 및 안전성 검정

13-1) 시험물질(점부자료 No.1) 및 폐쇄대조물질

(1) 시험물질: L2018 및 3.4-DHPAA
(2) 외관 및 성상: L2018 - 녹색의 결정성 분말, 3.4-DHPAA - 검색의 결정성 분말
(3) 보관조건: 실온보관
(4) 시험물질 종합차: 정 베 술 (한국생명공학연구원 지질대사연구실)
(5) 폐쇄대조물질: 0.5% tween 80

13-2) 시험계

(1) 사용동물의 종 및 계통: ICR계통의 특정병원계 무재(SPF) 마우스
(2) 사용동물의 공급원: 주식회사 대한바이오링크 (충청북도 음성군 삼성면 대야리 113)

- 33 -
(3) 시험계의 선택 이유: 마우스는 독성시험에 적합한 실험동물로서 일반학적 시험 및 독성시험에 널리 사용되고 있다. 또한 본 제도의 마우스는 동판한 시험 기초자료가 축적되어 있어서, 시험결과의 해석 및 평가시에 이러한 자료를 이용하는 것이 가능하다.

(4) 사용동물의 주령 및 제조법위

입수시 주령 : 5 주령
입술 시 동물수 : 40마리
투여개시 시 주령 : 6 주령
투여개시 시 동물수 : 33마리
투여개시 시 체중 : 29.2 ~ 31.7 g

(5) 검역 및 순화

동물 입수시에 의한 육인적으로 검사한 후 6일간 시험을 실시하는 동물실에서 순화시키면서 일반증상이 관찰하여 건강한 동물만을 시험에 사용했다.

(6) 사용환경

1) 환경조건 : 본 시험은 온도 23±3℃, 상대습도 50±10%, 조명시간 12시간 (오전 6시~오후 6시), 환기량, 토 10~20회/hr. 및 조도 150~300 lux로 설정된 한국생명공학연구원 실험동물공 107호실에서 사용하였다. 시험자들은 모두 고압증기밀폐(121℃, 20분)된 작업복, 두건, 마스크 및 장갑 등을 착용하고 작업을 실시하였다.

2) 사료, 사료 및 사료성자의 식별 : 순화, 검역기간 동안에는 폴리카보네이트제 구두형
사료상자 (260W x 410L x 200H mm)에 15마리씩 수용하였다. 투여 및 관찰기간 중에도 폴리카보네이트
제 구두형 사료상자 (200W x 260L x 130H mm)에 3마리씩 수용하였다. 시험기간 중 사료상자는 시험
반호 및 동물번호를 기입한 라벨지를 붙여 식별하였다.

3) 사료 및 음수

① 사료의 급여방법 (원부자료 No.2)
사료는 방사선 밀균된 (PicoLab Co. Ltd., USA) 실험동물용 고형사료를 자유섭취시켰다.

② 음수의 급여방법 (원부자료 No.3)
음수는 상수도수를 고압압력기로 밀균시킨 후 물병을 이용하여 자유섭취시켰다.

13-3) 투여방법 및 투여용 시험물질 조제

(1) 투여방법: 단회 경구 투여

(2) 투여용 시험물질 조제: 시험물질은 촉각하여 용매인 0.5% tween 80에 용해하여 최고 용량군의 시
험물질 투여액을 조제하고, 이를 단계석식하여 저용량군들의 투여액을 조제하였다. 조제는 투여직전에 실
시하였다.

13-4) 시험군 구성

(1) 시험물질 투여군: 2 가지 시험물질 중 0.25, 0.5, 1, 2 및 5 g/kg
(2) 메체대조군: 0.5% tween 80

(3) 군구성:

<table>
<thead>
<tr>
<th>군</th>
<th>성별</th>
<th>동물수(마리)</th>
<th>동물번호</th>
<th>투여액량 (ml/kg)</th>
<th>투여량 (g/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>메체대조군</td>
<td>male</td>
<td>3</td>
<td>1~3</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>L2018</td>
<td>G1</td>
<td>3</td>
<td>4~6</td>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>G2</td>
<td>3</td>
<td>7~9</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>G3</td>
<td>3</td>
<td>10~12</td>
<td>10</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>G4</td>
<td>3</td>
<td>13~15</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>G5</td>
<td>3</td>
<td>16~18</td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>3.4-DHPAA</td>
<td>G6</td>
<td>3</td>
<td>19~21</td>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>G7</td>
<td>3</td>
<td>22~24</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>G8</td>
<td>3</td>
<td>25~27</td>
<td>10</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>G9</td>
<td>3</td>
<td>28~30</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>G10</td>
<td>3</td>
<td>31~33</td>
<td></td>
<td>5.0</td>
</tr>
</tbody>
</table>

13-5) 관찰항목 및 검사항목

1) 일반증상 및 사망동물의 관찰

투여당일은 최종 투여후 1시간에서 6시간까지는 메시간마다, 투여 익일부터 14일까지는 매일 1회 일반증상의 변화, 독성증상 및 사망동물의 유무를 관찰하였다.

2) 체중측정

시험에 사용된 모든 동물에 대하여 투여기시전과 투여후 1, 3, 7 및 14일에 체중을 측정하였다.

3) 부검소견관찰

투여후 14일째에 모든 생존동물을 CO2 가스를 이용하여 마취한 후 개복하여 부대동정백 절단으로
방혈시차 시킨 후 육안적으로 모든 내부 장기를 관찰하였다.
<table>
<thead>
<tr>
<th>연구 내용</th>
<th>연구 결과</th>
</tr>
</thead>
</table>
| **Citrus Bioflavonoids**
대사산물의 in vitro LDL-antioxidant 활성 검색 | **Citrus lavonoid metabolites** 중 3,4-DHPPEA> 3,4-DHPPA> Hesperetin> Hesperidin> Naringenin 순으로 강한 LDL 항산화 효과를 나타냈다 (Table 1). |
| **Citrus Bioflavonoids**
대사산물의 in vitro ACAT 활성 검색 | 500 μM 농도에서 Naringin (30.6%), Naringenin (36.2%)만이 ACAT 작용을 억제할 뿐 대부분의 대사산물은 ACAT 활성 저해능이 매우 낮았다 (Table 2). |
| **Citrus Bioflavonoids**
대사산물의 in vitro HMG-CoA reductase 활성 검색 | 1 mM 농도에서 o-HPPA (25%)만이 HMG-CoA reductase 활성을 억제할 뿐 대부분의 대사산물은 HMG-CoA reductase 활성 저해능이 없었다 (Table 3). |

토끼의 홍부동맥에 ORO로 염색한 후 측정면적에 대하여 지방성이 차지하는 면적(%)을 비교한 결과, 대조군과 비교하여 7개의 실험군에서 모두 유의성이 있게 감소된 양상을 나타내었으며, 이중 citrus flavonoids 대사산물은 투여한 6개군 모두가 혈관내벽의 지질 첨단을 효과적으로 억제하는 것으로 판명되었다. 각 실험군별의 지방사정 검사 비율은 8군 < 2군 < 4군 < 5군 < 7군 < 6군 < 3군의 순으로 높았다. 이중 가장 낮은 지방사정 첨단을 보인 6군의 경우에는 현재 고지혈증 치료제로 사용되고 있는 lovastatin을 투여한 2군보다도 낮은 지방사정을 보여 그 효능이 매우 뛰어난 것으로 판단되었다 (Fig. 2-4, Table 4). |

Citrus flavonoids 체내
대사산물을 투여한 토끼의 혈액화학 분석 결과 | 각 실험군 토끼의 혈청내 성분들을 분석한 결과, 총콜레스테롤 (TC)의 경우 실험군간의 유의성이 없었으나, 실험군 모두 대조군과 비교하여 낮은 수치를 보였으며, 특히 5군과 6군, 7군의 총콜레스테롤 양상 효과가 나타나며, 증식지질 (TG)의 경우에는 3군, 5군, 7군, 8군에서 낮은 수치를 나타내었다. 고혈당혈 (HDL)의 경우에는 대조군과 비교하여 비슷하거나 낮은 수치를 보였다. 또한 간세포의 가능성을 판단한 혈청내 GGT와 GPT의 경우에는 대조군에 비하여 lovastatin을 투여한 2군에서 매우 높게 나타나 lovastatin이 간에 독성이 있음을 알선하였으며, 그 밖의 실험군에서는 대조군과 차이를 보이지 않았다. 이와 같은 결과들은 citrus bioflavonoids 대사산물의 투여가 혈액내 지질성분을 어느 정도 개선하는 것으로 보여지며, lovastatin과 다르게 간독성은 없는 것으로 나타났다 (Table 5). |

Citrus flavonoids 체내
대사산물을 투여한 토끼의 hepatic ACAT 활성 변화 관찰 | 총콜레스테롤 에스테르화를 촉매하는 효소인 hepatic ACAT 활성은 대조군에 비해 모든 군에서 감소하였으며, 특히 5군(32%, P=0.015), 6군(32.8%, P=0.004), 7군(36.4%, P=0.003)은 대조군에 비하여 유의성이 매우 높게 ACAT 활성이 감소되었다(Table 6). |
<table>
<thead>
<tr>
<th>Citrus flavonoids 제내 대사산물을 투여한 토끼의 조직학적 관찰 결과</th>
<th>토끼 각 실험군의 동맥, 패, 심근, 신장, 근육 등의 조직에 대한 병리조직학적인 변화를 광학현미경으로 관찰한 바, 동맥내막의 두께가 대조군에서는 매우 두껍게, 나머지 실험군에서는 이보다 넓은 관찰되어 동맥내막에 대한 지방전이면적의 측정결과와 일치하는 양상을 보였다. 한편, lovastatin을 투여하는 2군의 간조직이 대조군 및 나머지 실험군의 간조직과 비교하여 지방변성 심한 것으로 나타나 혈액분석에서 간소변과 관련된 호소의 증가와 연관이 있는 것으로 사료되었다. 그 밖의 장기에 대한 관찰에서는 특이한 병변을 발견되지 않아 본 실험에서 이용한 Citrus bioflavonoids 대사산물들의 투여로 인한 각 장기에 대한 독성이 있는 증거는 발견하지 못하였다.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrus flavonoids 제내 대사산물을 투여한 토끼의 분자생물학적 분석 결과</td>
<td>토끼 각 실험군의 혈 1~2 년간동맥 사이부분에 대한 동맥조직 관련인자들에 대한 분자수준에서의 변화를 관찰하기 위하여 RNA를 추출하여 RT-PCR을 수행하여 각각의 동맥조직 관련인자에 대한 PCR 조건을 Table 7에 나타낸 바와 같이 확립하였으며, 일부의 전기영동 결과를 그림으로 참조하였다 (Fig. 1).</td>
</tr>
<tr>
<td>Citrus flavonoids 제내 대사산물을 투여한 LDLr-/-마우스의 혈중지질 농도 변화 관찰</td>
<td>혈중 콜레스테롤의 양은 고지혈증이 8주 후 모든 동물에서 약 1,000 mg/dl 이상까지 높아졌다. 이러한 혈중 콜레스테롤의 농도에 는 naringin이 현재 동맥경화 치료제로 많이 사용되고 있는 lovastatin과 비슷한 수준으로 감소시키는 효과를 보였으나, 동체적으로 유의성이 있는 정도는 아니었다 (Table 8).</td>
</tr>
<tr>
<td>Citrus flavonoids 제내 대사산물을 투여한 LDLr-/-마우스에서 지방전이 조직에 미치는 영향</td>
<td>고지혈 증상의 일환인 유전자의 결정들 모두에서 지방전 조직이 발견되었으며(Figure 3A-F), 이들은 각각의 Citrus bioflavonoids 등에 서서 다른 정도의 혈동맥경화 효과를 보였다. Computer morphometry로 측정한 병변의 면적은 대조군이 1272.3±27574.8, naringin은 7404.4±26534, naringenin은 11736.3±30077, p-HPPA가 86758.0±31004.2로 측정되었으며, 기존에 사용되고 있는 약물인 lovastatin은 6784.8±22096.2로 나타났다. Naringenin을 제외한 naringin과 p-HPPA는 유의성(P<0.001)이 매우 높게 항동맥경화 효과를 보임을 알 수 있었다 (Fig. 5-6).</td>
</tr>
<tr>
<td>Citrus flavonoids 대사산물을 투여한 쥐의 식이섭취량, 총중량증가 및 장기 무게 변화 관찰 (위탁과제 Table 1 참조)</td>
<td>3,4-dihydroxy phenylpropionic acid 급여군이 대조군에 비교시 유의적인 총중량을 보였으나, 다른 실험군들간 총중량 및 식이섭취량에 미치는 영향은 없었다. 간과 신장조직의 무게는 식이요소간 유의적 차이가 없었으며, 심장무게는 naringenin을 제외한 모든 실험군들간 대조군과 비교할 경향을 보였다.</td>
</tr>
<tr>
<td>Citrus flavonoids 대사산물이 죽의 혈장과 간조직의 TBARS 농도에 미치는 영향 (위탁과제 Table 5 참조)</td>
<td>1) 모든 실험결과에서 대조군에 비하여 혈장과 간조직의 지질과산화 수준(TBARS)의 농도를 유의적으로 감소시켰다. 그 중 hesperetin 대사산물들의 저하효능이 우수하였다. 결과: naringenin 및 hesperetin 대사산물은 증가하는 것으로 나타났다.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Citrus flavonoids 대사산물이 죽의 품질성 지질수준 변화에 미치는 영향 (위탁과제 Table 3 참조)</td>
<td>1) 간의 콜레스테롤 함량은 lovastatin군만이 대조군에 비해 낮았으며 naringenin, p-HPPA, p-hydroxybenzoic acid, hesperetin군은 lovastatin군과 유사하거나 대조군보다 낮은 경향을 보였다. H. P-HPEA군에서는 간 조직 콜레스테롤 수준이 대조군보다 낮게 나타났다. 2) 콜레스테롤의 표준물질로 사용된 lovastatin과 시험물질중 p-hydroxybenzoic acid의 효능이 가장 우수하였다. 결과: 실험물질중 p-hydroxybenzoic acid만이 간조직의 콜레스테롤 수준을 유의적으로 감소시키는 것으로 평가되었다.</td>
</tr>
<tr>
<td>Citrus flavonoids 대사산물이 죽의 품질성 지질성 지질효소 활성에 미치는 영향 (위탁과제 Table 4 참조)</td>
<td>1) 간의 콜레스테롤 함량은 lovastatin군만이 대조군에 비해 낮았으며 naringenin, p-HPPA, p-hydroxybenzoic acid, hesperetin군은 lovastatin군과 유사하거나 대조군보다 낮은 경향을 보였다. H. P-HPEA군에서는 조직 콜레스테롤 수준이 대조군보다 낮게 나타났다. 2) 콜레스테롤 에스테르화를 촉매하는 효소인 ACAT 활성은 lovastatin, p-HPPA, p-hydroxybenzoic acid 보충에 의한 변화는 없었으나 나머지 대사산물 흡여시 대조군에 비하여 유의적으로 감소되었다. 결과: 전체적으로 naringenin 및 hesperetin 대사산물 보충에 의하여 HMG-CoA reductase와 ACAT활성이 저하되었다.</td>
</tr>
<tr>
<td>Citrus flavonoids 대사산물이 죽의 혈장과 간조직의 TG 농도에 미치는 영향 (위탁과제 Table 2 참조)</td>
<td>1) 혈장 콜레스테롤(TG) 농도는 시험물질 중 naringenin과 o-HPPA를 제외한 모든 시험물질 투여군이 대조군에 비하여 저하되었고, hesperetin이 타 대사산물에 비해 혈장 TC 강한 효과가 우수했다. 2) 혈장 증식지질 농도(TG)는 naringenin, p-HPPA, 및 o-HPPA를 제외한 모든시험군에서 감소되었다. 3) 혈장 HDL-C 농도는 식이요소 간 유의적 차이가 없었다. 4) 콜레스테롤에 대한 HDL-콜레스테롤의 비는 p-HPPA, p-hydroxybenzoic acid, hesperetin 급여군에서 유의적으로 증가되었다. 5) 동맥경화위험 점수에 대한 동맥경화지수(AI)도 p-HPPA, p-hydroxybenzoic acid, hesperetin 및 3-methoxy-4-HPEA 급여시 유의적으로 감소되었다. 결론: Flavonoid metabolite의 전체적인 항중질 강화효과는 p-hydroxybenzoic acid, hesperetin > 3-methoxy-4-HPEA > m-HPEA, 3,4-DHPPA > p-HPPA > naringenin, o-HPPA > lovastatin 의 순으로 평가되었다.</td>
</tr>
</tbody>
</table>
Citrus flavonoids 대사산물이
쥐의 간조직 중의 항산화 효소
활성에 미치는 영향
(위탁과제 Table 6 참조)

① Bioflavonoids 대사산물과 lovastatin 급여시 SOD 활성도는 모
d우 증가되었다.
② Catalase 활성도는 lovastatin, p-hydroxybenzoic acid, 및
α-HPPA군은 제외한 모든군에서 감소되었다.
③ 반면, GSH-Px 활성도는 대조군에 비하여 lovastatin, naringenin, p-HPPA, p-hydroxybenzoic acid, 및 3-methoxy-4-HPPEA에서
유의적으로 증가되었다.
결론: 따라서 이들 시험물질의 석이보충이 항산화 방어계에 미치
는 일반적인 영향은 SOD와 GSH-Px활성을 증가시키는 동시에
catalase 활성도는 감소시킴. 이러한 catalase와 GSH-Px의 상반
된 변화와 간조직의 TBARS 감소결과는 이들 석이식이에서 간세
포의 catalase의 활성 증가 필요성이 없음을 시사한다.

Citrus flavonoids 대사산물이
쥐의 간독성에 미치는 영향
(위탁과제 Table 7 참조)
모든 시험물질급여군이 혈장 GOT・GPT활성 변화에 미치는 영향
은 없었다. 즉, 이들 시험물질의 간독성은 관찰되지 않았다.

Table 1. LDL-antioxidant activity of citrus flavonoids and their metabolites

<table>
<thead>
<tr>
<th>Citrus flavonoids and their metabolites</th>
<th>Concentration (µM)</th>
<th>LDL-oxidation Inhibition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naringin</td>
<td>40</td>
<td>9.9</td>
</tr>
<tr>
<td>Naringenin</td>
<td>40</td>
<td>41.2</td>
</tr>
<tr>
<td>Hesperidin</td>
<td>40</td>
<td>51.0</td>
</tr>
<tr>
<td>Hesperetin</td>
<td>40</td>
<td>60.8</td>
</tr>
<tr>
<td>2-Hydroxycinnamic acid</td>
<td>40</td>
<td>33.3</td>
</tr>
<tr>
<td>3-Hydroxycinnamic acid</td>
<td>40</td>
<td>25.6</td>
</tr>
<tr>
<td>4-Hydroxyacetophenone</td>
<td>40</td>
<td>21.6</td>
</tr>
<tr>
<td>α-HPPA</td>
<td>40</td>
<td>31.3</td>
</tr>
<tr>
<td>p-HPPA</td>
<td>40</td>
<td>23.6</td>
</tr>
<tr>
<td>3,4-DHPPEA</td>
<td>12</td>
<td>67.8</td>
</tr>
<tr>
<td>3,4-DHPPEA</td>
<td>4</td>
<td>52.9</td>
</tr>
<tr>
<td>4-Methoxy 3-HPPEA</td>
<td>40</td>
<td>21.6</td>
</tr>
<tr>
<td>3-Methoxy-4-HPPEA</td>
<td>40</td>
<td>13.8</td>
</tr>
<tr>
<td>3-Hydroxybenzoic acid</td>
<td>40</td>
<td>3.9</td>
</tr>
<tr>
<td>4-Hydroxybenzoic acid</td>
<td>40</td>
<td>27.6</td>
</tr>
<tr>
<td>Probucol (Positive control)</td>
<td>40</td>
<td>67.4</td>
</tr>
</tbody>
</table>
Table 2. Rat liver ACAT activity of citrus flavonoids and their metabolites (Final Conc. 500 μM)

<table>
<thead>
<tr>
<th>Citrus flavonoids and their metabolites</th>
<th>ACAT Inhibition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naringin</td>
<td>30.6</td>
</tr>
<tr>
<td>Naringenin</td>
<td>36.2</td>
</tr>
<tr>
<td>Hesperidin</td>
<td>19.8</td>
</tr>
<tr>
<td>2-Hydroxycinnamic acid</td>
<td>23.0</td>
</tr>
<tr>
<td>3-Hydroxycinnamic acid</td>
<td>12.4</td>
</tr>
<tr>
<td>4-Hydroxycinnamic acid</td>
<td>19.6</td>
</tr>
<tr>
<td>o-HPPA</td>
<td>8.7</td>
</tr>
<tr>
<td>p-HPPA</td>
<td>26.1</td>
</tr>
<tr>
<td>3,4-DHPPA</td>
<td>17.4</td>
</tr>
<tr>
<td>3,4-DHPPEA</td>
<td>0.6</td>
</tr>
<tr>
<td>4-Methoxy 3-HPPEA</td>
<td>22.5</td>
</tr>
<tr>
<td>3-Methoxy-4-HPPEA</td>
<td>21.6</td>
</tr>
<tr>
<td>3-Hydroxybenzoic acid</td>
<td>12.5</td>
</tr>
<tr>
<td>4-Hydroxybenzoic acid</td>
<td>12.3</td>
</tr>
</tbody>
</table>

Table 3. Rat liver HMG-CoA reductase activity of citrus flavonoids and their metabolites (Final Conc. 1 mM)

<table>
<thead>
<tr>
<th>Citrus flavonoids and their metabolites</th>
<th>HMG-CoA reductase inhibition Inhibition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naringin</td>
<td>3</td>
</tr>
<tr>
<td>Naringenin</td>
<td>5</td>
</tr>
<tr>
<td>Hesperidin</td>
<td>0</td>
</tr>
<tr>
<td>Hesperetin</td>
<td>0</td>
</tr>
<tr>
<td>2-Hydroxycinnamic acid</td>
<td>0</td>
</tr>
<tr>
<td>3-Hydroxycinnamic acid</td>
<td>7</td>
</tr>
<tr>
<td>4-Hydroxycinnamic acid</td>
<td>0</td>
</tr>
<tr>
<td>o-HPPA</td>
<td>25</td>
</tr>
<tr>
<td>p-HPPA</td>
<td>0</td>
</tr>
<tr>
<td>3,4-DHPPA</td>
<td>0</td>
</tr>
<tr>
<td>3,4-DHPPEA</td>
<td>0</td>
</tr>
<tr>
<td>4-Methoxy 3-HPPEA</td>
<td>4</td>
</tr>
<tr>
<td>3-Methoxy-4-HPPEA</td>
<td>0</td>
</tr>
<tr>
<td>3-Hydroxybenzoic acid</td>
<td>13.5</td>
</tr>
<tr>
<td>4-Hydroxybenzoic acid</td>
<td>0</td>
</tr>
<tr>
<td>Pravastatin 10 nM (Positive control)</td>
<td>50</td>
</tr>
</tbody>
</table>
Table 4. Citrus flavonoids 대한산물의 동맥내 지방선 억제효과

<table>
<thead>
<tr>
<th>Groups</th>
<th>1군 (n=10)</th>
<th>2군 (n=10)</th>
<th>3군 (n=10)</th>
<th>4군 (n=10)</th>
<th>5군 (n=10)</th>
<th>6군 (n=10)</th>
<th>7군 (n=10)</th>
<th>8군 (n=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>지방선 (%)</td>
<td>50.8±8.6</td>
<td>17.0±7.6^T</td>
<td>27.1±10.8^T</td>
<td>23.6±4.2^T</td>
<td>23.8±11.0^T</td>
<td>26.1±16.3^T</td>
<td>24.3±11.4^T</td>
<td>14.6±3.6^T</td>
</tr>
</tbody>
</table>

*: Mean±SD.
†: Means are significantly different (p<0.01 or p<0.05) from control group.

Table 5. Citrus flavonoids 대한산물의 투여에 따른 혈액분석 결과

<table>
<thead>
<tr>
<th>Groups</th>
<th>TC^* (mg/dl)</th>
<th>TG^* (mg/dl)</th>
<th>HDL^* (mg/dl)</th>
<th>GOT^* (IU/ℓ)</th>
<th>GPT^* (IU/ℓ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1군</td>
<td>2503</td>
<td>294</td>
<td>62.8 ± 11.6</td>
<td>77.4 ± 24.0</td>
<td>26.5 ± 13.7</td>
</tr>
<tr>
<td>2군</td>
<td>2063</td>
<td>248</td>
<td>57.9 ± 9.9</td>
<td>104.8 ± 23.6^T</td>
<td>43.8 ± 18.2</td>
</tr>
<tr>
<td>3군</td>
<td>2117</td>
<td>202</td>
<td>57.3 ± 24.1</td>
<td>71.6 ± 20.0</td>
<td>37.4 ± 13.4</td>
</tr>
<tr>
<td>4군</td>
<td>2312</td>
<td>274</td>
<td>58.5 ± 14.3</td>
<td>70.9 ± 22.8</td>
<td>26.4 ± 10.1</td>
</tr>
<tr>
<td>5군</td>
<td>1782</td>
<td>202</td>
<td>61.0 ± 12.1</td>
<td>80.0 ± 36.6</td>
<td>33.1 ± 7.9</td>
</tr>
<tr>
<td>6군</td>
<td>1728</td>
<td>215</td>
<td>62.1 ± 23.2</td>
<td>68.0 ± 21.3</td>
<td>29.2 ± 10.8</td>
</tr>
<tr>
<td>7군</td>
<td>1544</td>
<td>143</td>
<td>50.4 ± 18.9</td>
<td>86.3 ± 32.0</td>
<td>34.5 ± 14.7</td>
</tr>
<tr>
<td>8군</td>
<td>2063</td>
<td>189</td>
<td>54.4 ± 11.1</td>
<td>76.9 ± 33.3</td>
<td>27.1 ± 4.7</td>
</tr>
</tbody>
</table>

*: Mean; **: Mean±SD.
†: Means are significantly different (p<0.01) from control group.

Table 6. Effect of supplementation of bioflavonoids metabolites on hepatic ACAT activities in high cholesterol-fed rabbits

<table>
<thead>
<tr>
<th>Groups</th>
<th>Hepatic ACAT activity (pmol/min/mg/protein)</th>
<th>F value vs control</th>
</tr>
</thead>
<tbody>
<tr>
<td>1군(Control)</td>
<td>133.5 ± 40.5</td>
<td></td>
</tr>
<tr>
<td>2군</td>
<td>104.0 ± 14.0</td>
<td>0.053</td>
</tr>
<tr>
<td>3군</td>
<td>106.0 ± 19.2</td>
<td>0.041</td>
</tr>
<tr>
<td>4군</td>
<td>104.2 ± 17.3</td>
<td>0.031</td>
</tr>
<tr>
<td>5군</td>
<td>90.75 ± 15.2</td>
<td>0.015</td>
</tr>
<tr>
<td>6군</td>
<td>87.7 ± 16.5</td>
<td>0.004</td>
</tr>
<tr>
<td>7군</td>
<td>84.7 ± 13.9</td>
<td>0.003</td>
</tr>
<tr>
<td>8군</td>
<td>103.2 ± 17.2</td>
<td>0.023</td>
</tr>
</tbody>
</table>

*: Mean±SD.
<table>
<thead>
<tr>
<th>Factors</th>
<th>Product size (bp)</th>
<th>PCR conditions (°C)</th>
<th>No. of Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLDLR</td>
<td>451</td>
<td>94/67/72</td>
<td>34</td>
</tr>
<tr>
<td>LRP</td>
<td>544</td>
<td>94/72/72</td>
<td>28</td>
</tr>
<tr>
<td>SR</td>
<td>646</td>
<td>94/65/72</td>
<td>30</td>
</tr>
<tr>
<td>VCAM-1</td>
<td>567</td>
<td>94/58/72</td>
<td>25</td>
</tr>
<tr>
<td>MCP-1</td>
<td>327</td>
<td>94/63/72</td>
<td>30</td>
</tr>
<tr>
<td>GAPDH</td>
<td>465</td>
<td>94/63/72</td>
<td>27</td>
</tr>
</tbody>
</table>

Fig. 1. 동맥경화 관련 인자들의 RT-PCR 전기영동 그래프.
Fig. 2. Effects of naringin and naringenin on the aortic fatty streak formations in rabbit model fed a high cholesterol diet for 8 weeks. (A) Gross photographs of oil red-O stained aorta between the second and seventh intercostals arteries (third portion). (B) A graph of atherosclerotic lesion size expressed as a percentage of the oil red-O positive area/measured internal surface in each group. Bars represent standard deviations. * are significantly different ($P < 0.001$) from control group.

Fig. 3. Representative microscopic photographs of descending aorta (second portion) stained with hematoxylin and eosin (A, D, and G), and immunostained with macrophages (B, E, and H) and smooth muscle cell (C, F, and I) antibodies. Naringin (D, E, and F) and naringenin (G, H, and I) supplementations reduced the intimal thickness and decreased the amount of immunostained cells, compared with control group (A, B, and C). Bars represent 93 mm.
Fig. 4. Effects of naringin and naringenin on the expressions of aortic (first portion) VCAM-1 and MCP-1 genes determined by semiquantitative RT-PCR as described under Materials and Methods. (A) Competitive expressions of aortic GAPDH determined by competitive PCR using as competitor a 168 bp-deleted cDNA fragment of the PCR product. (B) Ethidium bromide stained agarose gels showing RT-PCR products amplified with VCAM-1 and MCP-1 primers in different groups. Decreased expressions of VCAM-1 (C) and MCP-1 (D) determined relative to the expression of GAPDH were observed in naringin- and naringenin-supplemented groups. Bars represent standard deviations. * are significantly different (P < 0.01) from control group.
Table 8. Plasma Total Cholesterol, HDL and Triglyceride levels of LDLr-/− mice after 1% cholesterol diet containing Citrus flavonoids for 8 Weeks

<table>
<thead>
<tr>
<th>Group</th>
<th>Total Cholesterol (mg/dl)</th>
<th>HDL-cholesterol (mg/dl)</th>
<th>Triglyceride (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1145.5±43.9</td>
<td>16.6±13.3</td>
<td>152.9±34.7</td>
</tr>
<tr>
<td>Lovastatin</td>
<td>1035.7±80.0</td>
<td>12.7±5.5</td>
<td>162.7±94.7</td>
</tr>
<tr>
<td>Naringin</td>
<td>1061.5±47.6</td>
<td>10.4±2.5</td>
<td>158.0±90.2</td>
</tr>
<tr>
<td>Naringenin</td>
<td>1080.6±47.8</td>
<td>27.4±25.3</td>
<td>147.1±62.3</td>
</tr>
<tr>
<td>p-HPPA</td>
<td>1083.3±117.1</td>
<td>25.6±23.4</td>
<td>172.4±37.1</td>
</tr>
</tbody>
</table>

Fig. 5. Effect of Citrus bioflavonoids on the regression of atherosclerotic lesions in aortic sinus. LDLr-/− mice were fed their respective atherogenic test diets for 8 weeks. The area of lesions were measured in the six serial section of the aortic sinus from an individual animal. Each bar represents mean lesion area for each group (n=6).
Fig. 6. Representative photographs of oil red O stained fatty streak areas in each of 5 groups. A; control group fed high cholesterol diet (40X), B; naringin treated group (0.1% wt/wt diet) (40X), C; naringenin treated group (0.1% wt/wt diet) (40X), D; p-HPPA treated group (0.1% wt/wt diet), E; lovastatin treated group (0.1% wt/wt diet).
<table>
<thead>
<tr>
<th>연구 내용</th>
<th>연구 결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioflavonoid 생체내 대사산물의 유도체 합성</td>
<td>Hesperetin의 유도체 또는 citrus bioflavonoid 생체내 대사산물의 유도체 약 40 종을 합성</td>
</tr>
<tr>
<td>Citrus Bioflavonoids 합성유도체의 in vitro LDL-antioxidant 활성 검색</td>
<td>합성유도체 중 최종농도 4 μg/ml에서 LDL-oxidation을 대조군에 비해 50% 이상 저해하는 물질 6 개 (1033, 1042, 2024, 1090, 2093, 2097)를 선발하였다 (Table 9).</td>
</tr>
<tr>
<td>Citrus Bioflavonoids 합성유도체에 대한 spot test</td>
<td>합성유도체를 0.05% wt/wt diet로 일주일간 투여 후 5% 이상의 혈중 콜레스테롤을 감소 효과가 있는 화합물 4 개 (1055, 1059, 2018, 2024)를 선발하였다 (Table 10).</td>
</tr>
</tbody>
</table>

실험된 2개 합성유도체의 토끼를 이용한 활성 검색

| LDL-antioxidant 활성과 spot test 결과를 바탕으로 2개의 합성유도체인 2018과 2024를 선발하였으며, New Zealand White 수컷 토끼에게 1% 콜레스테롤 청가 토끼용 고형사료 (RC4 diet, Oriental Yeast Co., Japan)와 citrus bioflavonoids 합성유도체를 투여하여 항혈액성화 효과를 검정하였다. |

실험된 2개 합성유도체를 투여한 토끼의 대동맥내 지방선 분석 결과

| 토끼의 홍부동맥내 ORO로 염색한 후 측정면적에 대하여 지방선이 차지하는 면적(%)을 비교한 결과, 대조군과 비교하여 2018 실험군에서 유의성 있게 43% 지방선 촉적이 감소된 양상을 나타내었으며, 2024 실험군은 대조군에 비해 8% 지방선 촉적이 감소된 양상을 나타내었으며, 2018군은 hesperetin보다 현저한 역제효과를, 2024는 비슷한 수준의 지방선 촉적 역제 효과를 나타내었다 (Fig. 7, Table 11). |

실험된 2개 합성유도체를 투여한 토끼의 혈액화학 분석 결과

| 각 실험군 토끼의 혈청내 성분들을 분석한 결과, 콜레스테롤 (TC)의 경우 대조군과 비교하여 모든 군이 큰 차이가 없었으며, 중성지질 (TG)의 경우에는 hesperetin, 2018, 2024군이 모두 대조군에 비해 증가하였으며, GPT 또한 2018, 2024군에서 약간 상승하는 negative effect를 나타내어 lovastatin과 함께 약간의 간독성 이 우려된다 (Table 12). |

FPLC를 이용한 합성유도체를 투여한 토끼혈장의 lipoprotein profile 분석

| 토끼에 2018 화합물을 투여한 경우 대조군에 비해 VLDL의 TC과 TG가 감소한 현상을 보여주어 VLDL lipid clearance effect를 보여주고 있으며, 2024 화합물군은 VLDL TC는 대조군에 비해 감소하지만, 혈액화학분석에서 예전할 수 있었던 것처럼 VLDL TG가 증가하였다 (Fig. 8, Fig. 9). |
합성유도체 투여한 토끼의 hepatic ACAT 활성변화 관찰	클레스테롤 에스테르화를 촉매하는 효소인 hepatic ACAT 활성은 대조군에 비해 모든 군에서 감소하였으며, 특히 2018군(15.8%, \(P=0.05 \))은 유의성 있게 lovastatin군(10.0%, \(P=0.05 \))보다 감소하였으며, 2024군도 유의성은 없으나, 대조군 및 hesperetin 투여군보다 감소하는 양상을 보였다 (Fig. 10).
합성유도체 투여한 토끼의 조직학적 관찰 결과	토끼 각 실험군의 동맥, 폐, 심근, 신장, 근육 등의 조직에 대한 병리조직학적인 변화를 광학현미경으로 관찰한 바, 동맥내벽의 두께가 대조군에서는 매우 두껍게, 나머지 실험군에서는 이보다 낮게 관찰되어 동맥내벽에 대한 지방선만(dllexport층)의 측정결과와 일치하는 양상을 보였다. 한편, lovastatin을 투여하는 2군의 간조직이 대조군 및 나머지 실험군의 간조직과 비교하여 지방선성 심한 것으로 나타나 혈청분석에서 간손상과 관련된 효소의 증가와 연관이 있는 것으로 사료되었다. 그 밖의 장기에 대한 관찰에서는 특이한 변변을 발견되지 않아 본 실험에서 이용된 citrus bioflavonoids 대사산물들의 투여로 인한 각 장기에 대한 두해당 특성은 발견되지 않았다.
결론	Hesperetin의 유도체 또는 citrus bioflavonoid 생체내 대사산물의 유도체 약 40 종을 합성하여 LDL-antioxidant 활성 및 spot test를 통해 2 개의 화합물인 2018과 2024를 선별하였으며, New Zealand White 수컷 토끼에게 투여하여 항동맥경화 효과를 검정한 결과, 대조군과 비교하여 2018 실험군에서 유의성 있게 43% 지방선 촉적이 감소된 양상을 나타내었으며, 2024 실험군은 대조군에 비해 8% 지방선 촉적이 감소되었고, hepatic ACAT 활성도 감소하였다. 2018 화합물을 투여한 경우 대조군에 비해 VLDL의 TC과 TG가 감소한 현상을 보여주어 VLDL lipid clearance effect를 보여주고 있으며, 혈청내 GPT 증가로 간손상을 우려하였으나, 조직학적 관찰을 통해 각 장기에 대한 두해당 특성은 발견되지 않았다.
합성유도체 투여한 쥐의 식이섭취량, 체중증가량 및 장기 무게에 미치는 영향	① Lovastatin군여군의 심장중량이 대조군을 제외한 나머지 식이군에 비해 유의적으로 높았음. ② 간과 신장조직의 두께는 식이군간 유의적 차이가 없었음. ③ 실험동물(2024, 2018)들이 체중증가량 및 식이섭취량에 미치는 영향은 없었음.
합성유도체 투여한 쥐의 혈장의 지질변수에 미치는 영향 (위탁과제 Table 3)

1. 혈장 콘테스테롤 농도: Probuco 군, hesperetin군 및 두 층군 (2024군과 2018군)이 Lovastatin군과 대조군에 비해 유의적으로 저하되었음 (위탁과제 Fig 1).
2. 혈장 중성지질 농도: 혈장 콘테스테롤 수준과 동일한 변화가 관찰되었음 (위탁과제 Fig 2).

결론: 전체적인 혈중지질 강화효과는 2024 or 2018 > probuco > hesperetin >> Lovastatin > control군의 순으로 평가되었음.

합성유도체 투여한 쥐의 간조직의 지질수준에 미치는 영향 (위탁과제 Table 4)

1. 간의 콘테스테롤 함량: Lovastatin군과 hesperetin군만이 대조군에 비해 유의적으로 낮았으며, probuco의 실험물질 (2024, 2018)군은 대조군과 차이가 없었음.
2. 중성지질 함량: 대조군을 비롯한 6식이요소의 유의적인 차이는 전혀 관찰되지 않았음.

결론: 실험물질 보충에 의한 간조직의 지질함량 변화는 없는 것으로 평가되나, 간조직 콘테스테롤 수준은 대조군에 비해 낮아져 모든 식이요소에서 감소된 경향임.

합성유도체 투여한 쥐의 콘테스테롤 조절효소 활성에 미치는 영향 (위탁과제 Table 5)

1. 간조직 중의 콘테스테롤 합성 효소인 HMG-CoA reductase활성은 표준물질로 사용된 lovastatin과 probuco, hesperetin 및 실험물질 (2024, 2018)의 보충에 의해 전체적으로 유의적으로 감소를 보였음 (위탁과제 Fig 3).
2. 콘테스테롤 에스테르화효율 촉매하는 효소인 ACAT 활성도는 lovastatin과 실험물질 2024 두 층군이 대조군에 비해 낮은 경향을 보였으나, 나머지 식이요소 (probuco군, hesperetin군, 실험물질 2018)군은 대조군에 비해 유의적으로 낮게 나타났음 (위탁과제 Fig 4).

결론: HMG-CoA reductase은 두 실험물질에 의해 동일하게 저하 되었으나 ACAT활성은 실험물질 2018에 의해서만 유의적으로 저하되었고, 2024군은 대조군에 비해 낮은 경향만 나타내었음.
| 합성유도체 투여한 귀의 간조직 중의 TBARS 농도에 미치는 영향 (위탁과제 Table 6) | ① 혈장의 지질과산화물 생성정도: 5개식이군(lovastatin, probucol, hesperetin, 2024, 2018)의 TBARS 농도는 모두 대조군에 비해 모두 유의적으로 낮았음.
② 간조직의 지질과산화물 생성 정도: Probucol군만이 hesperetin군에 비해 유의적으로 낮았으나, hesperetin군, 대조군, lovastatin군, probucol군, 2024군 및 2018군 간 차이는 없었음.
결론: Hesperetin 유도체인 2024와 2018 화합물 보충은 혈장에서만 지질과산화 생성 억제효과를 나타내었음. |
| 합성유도체 투여한 귀의 간조직 중의 항산화효소 활성에 미치는 영향 (위탁과제 Table 7) | ① Hepatic SOD activity: 6식이군간 유의적 차이는 전혀 관찰되지 않았음.
③ Hepatic GSH-Px activity: Catalase 활성도와는 대조적으로 2024군만이 항산화물질 투여군인 probucol군에 비해 유의적으로 낮게 나타났음. Probucol군을 제외한 5식이군간에는 유의적 차이가 관찰되지 않았음.
결론: 따라서 이들 시험물질(2024, 2018)의 식이보충이 항산화 방어계에 미치는 일반적인 영향은 SOD와 GSH-Px활성도의 영향과 미치지 않으나, catalase 활성도를 증가시킨 것으로 평가됨. Hepatic antioxidative enzyme들 중 catalase의 변화양상은 hepatic TBARS수준 변화와 연관된 것으로 평가됨. 이는 간세포의 과산화물생성 억제에 대한 catalase의 작용을 시사함. |
| 합성유도체 투여한 귀의 간독성에 미치는 영향 (위탁과제 Table 8) | ① GOT활성도는 시험물질(2024, 2018)투여에 의해 감소되었으나, GPT활성도는 2018에 의해 다소 증가되는 것으로 나타났음.
Table 9. LDL-Antioxidant Activities of Synthetic derivatives

<table>
<thead>
<tr>
<th>번호</th>
<th>시료명</th>
<th>LDL-oxidation</th>
<th>Inhibition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Final concentration</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>40 µg/ml</td>
<td>20 µg/ml</td>
</tr>
<tr>
<td>2</td>
<td>Probucol</td>
<td>66</td>
<td>79</td>
</tr>
<tr>
<td>3</td>
<td>1000</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1033</td>
<td>92</td>
<td>79</td>
</tr>
<tr>
<td>5</td>
<td>1037</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1038</td>
<td>64</td>
<td>58</td>
</tr>
<tr>
<td>7</td>
<td>1040</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1042</td>
<td>74</td>
<td>64</td>
</tr>
<tr>
<td>9</td>
<td>1044</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1046</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1047</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1048</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1049</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1050</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1051</td>
<td>67</td>
<td>52</td>
</tr>
<tr>
<td>16</td>
<td>1055</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1056</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1058</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1059</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1093</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1097</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>2001</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>2015</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2016</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>2018</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>2020</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>2024</td>
<td>75</td>
<td>59</td>
</tr>
<tr>
<td>28</td>
<td>2027</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>2032</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2044</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>2074</td>
<td>84</td>
<td>51</td>
</tr>
<tr>
<td>32</td>
<td>2090</td>
<td>92</td>
<td>60</td>
</tr>
<tr>
<td>33</td>
<td>2091</td>
<td>73</td>
<td>60</td>
</tr>
<tr>
<td>34</td>
<td>2092</td>
<td>77</td>
<td>61</td>
</tr>
<tr>
<td>35</td>
<td>2093</td>
<td>93</td>
<td>89</td>
</tr>
<tr>
<td>36</td>
<td>2094</td>
<td>76</td>
<td>63</td>
</tr>
<tr>
<td>37</td>
<td>2095</td>
<td>90</td>
<td>71</td>
</tr>
<tr>
<td>38</td>
<td>2096</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>2097</td>
<td>84</td>
<td>68</td>
</tr>
</tbody>
</table>
Table 10. Spot test of synthetic derivatives for cholesterol lowering effect on mice

<table>
<thead>
<tr>
<th>번호</th>
<th>시료명</th>
<th>TC (mg/dl)</th>
<th>번호</th>
<th>시료명</th>
<th>TC (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>대조군</td>
<td>222 ± 30</td>
<td>21</td>
<td>1097</td>
<td>255 ± 34</td>
</tr>
<tr>
<td>2</td>
<td>Lovastatin</td>
<td>182 ± 25</td>
<td>22</td>
<td>2001</td>
<td>218 ± 11</td>
</tr>
<tr>
<td>3</td>
<td>1000</td>
<td>229 ± 27</td>
<td>23</td>
<td>2015</td>
<td>231 ± 30</td>
</tr>
<tr>
<td>4</td>
<td>1033</td>
<td>245 ± 23</td>
<td>24</td>
<td>2016</td>
<td>237 ± 19</td>
</tr>
<tr>
<td>5</td>
<td>1037</td>
<td>229 ± 3</td>
<td>25</td>
<td>2018</td>
<td>204 ± 5</td>
</tr>
<tr>
<td>6</td>
<td>1038</td>
<td>222 ± 9</td>
<td>26</td>
<td>2020</td>
<td>243 ± 14</td>
</tr>
<tr>
<td>7</td>
<td>1040</td>
<td>228 ± 9</td>
<td>27</td>
<td>2024</td>
<td>210 ± 5</td>
</tr>
<tr>
<td>8</td>
<td>1042</td>
<td>250 ± 6</td>
<td>28</td>
<td>2027</td>
<td>239 ± 5</td>
</tr>
<tr>
<td>9</td>
<td>1044</td>
<td>242 ± 12</td>
<td>29</td>
<td>2032</td>
<td>263 ± 15</td>
</tr>
<tr>
<td>10</td>
<td>1046</td>
<td>234 ± 8</td>
<td>30</td>
<td>2044</td>
<td>247 ± 15</td>
</tr>
<tr>
<td>11</td>
<td>1047</td>
<td>215 ± 28</td>
<td>31</td>
<td>2074</td>
<td>211 ± 18</td>
</tr>
<tr>
<td>12</td>
<td>1048</td>
<td>230 ± 9</td>
<td>32</td>
<td>2090</td>
<td>231 ± 15</td>
</tr>
<tr>
<td>13</td>
<td>1049</td>
<td>216 ± 49</td>
<td>33</td>
<td>2091</td>
<td>231 ± 26</td>
</tr>
<tr>
<td>14</td>
<td>1050</td>
<td>250 ± 13</td>
<td>34</td>
<td>2092</td>
<td>259 ± 24</td>
</tr>
<tr>
<td>15</td>
<td>1051</td>
<td>250 ± 13</td>
<td>35</td>
<td>2093</td>
<td>221 ± 7</td>
</tr>
<tr>
<td>16</td>
<td>1055</td>
<td>209 ± 9</td>
<td>36</td>
<td>2094</td>
<td>232 ± 5</td>
</tr>
<tr>
<td>17</td>
<td>1056</td>
<td>213 ± 10</td>
<td>37</td>
<td>2095</td>
<td>232 ± 4</td>
</tr>
<tr>
<td>18</td>
<td>1058</td>
<td>237 ± 25</td>
<td>38</td>
<td>2096</td>
<td>215 ± 13</td>
</tr>
<tr>
<td>19</td>
<td>1059</td>
<td>208 ± 6</td>
<td>39</td>
<td>2097</td>
<td>218 ± 9</td>
</tr>
<tr>
<td>20</td>
<td>1093</td>
<td>241 ± 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 11. 항성유도체를 투여한 토끼의 동맥내 지방선 익제 효과 (%)

<table>
<thead>
<tr>
<th>대조군</th>
<th>Lovastatin</th>
<th>Hesperetin</th>
<th>2018</th>
<th>2024</th>
</tr>
</thead>
<tbody>
<tr>
<td>43.3±4.5<sup>a</sup> (n = 7)</td>
<td>21.5±5.0<sup>b</sup> (n = 9)</td>
<td>35.8±14.1 (n = 9)</td>
<td>24.7±6.0<sup>b</sup> (n = 9)</td>
<td>39.0±11.0 (n = 8)</td>
</tr>
</tbody>
</table>

^a : 측정값은 '평균±표준편차'로 나타내었음.
^b : 대조군에 비하여 동체량적으로 유의한 차이 (T-test, p < 0.01)를 보였음을.
Fig. 7. 대동맥 내벽의 욕안사진 (Oil red O 염색).

Table 12. 흡상유도체를 투여한 토끼의 혈액학적 분석 결과

<table>
<thead>
<tr>
<th>구분</th>
<th>TC (mg/dL)</th>
<th>HDL (mg/dL)</th>
<th>TG (mg/dL)</th>
<th>GOT (IU/L)</th>
<th>GPT (IU/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>대조군 (n = 6)</td>
<td>1341 ± 321a</td>
<td>60 ± 11</td>
<td>123 ± 53</td>
<td>121 ± 53</td>
<td>31 ± 10</td>
</tr>
<tr>
<td>Lovastatin (0.003%, wt/wt, n = 6)</td>
<td>1128 ± 301</td>
<td>59 ± 12</td>
<td>102 ± 54</td>
<td>149 ± 37</td>
<td>85 ± 11</td>
</tr>
<tr>
<td>JBB-4 (0.025%, wt/wt, n = 9)</td>
<td>1477 ± 295</td>
<td>71 ± 14</td>
<td>162 ± 38</td>
<td>85 ± 24</td>
<td>47 ± 8</td>
</tr>
<tr>
<td>2018 (0.025%, wt/wt, n = 9)</td>
<td>1246 ± 397</td>
<td>50 ± 12</td>
<td>188 ± 49</td>
<td>119 ± 26</td>
<td>71 ± 36</td>
</tr>
<tr>
<td>2024 (0.025%, wt/wt, n = 8)</td>
<td>1413 ± 423</td>
<td>59 ± 18</td>
<td>197 ± 84</td>
<td>79 ± 32</td>
<td>63 ± 25</td>
</tr>
</tbody>
</table>

a: 측정값은 '평균±표준편차'로 나타내었음.
Fig. 8. 혈청유도제 투여한 돼기의 혈장 total cholesterol의 lipoprotein profiles.
Fig. 9. The effects of various treatments on triglyceride levels in lipoprotein profiles.
Fig. 10. Effects of supplementation of synthetic derivatives on hepatic ACAT activities in high cholesterol-fed rabbits (*: $P < 0.05$).
<table>
<thead>
<tr>
<th>연구 내용</th>
<th>연구 결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,4-DHPPA (Fig. 11 & 12) 및 L2018, L2024 (Fig. 18 & 19)는 동맥경화마우스 모델 및 토끼 모델에서 동맥벽에 형성되는 지방조직의 면적을 감소시키는 효과가 있음을 알 수 있었고, 이는 동맥경화의 발생 초기에 단핵구 세포가 동맥벽면에 부착하는데 관여하는 vascular cell adhesion molecule-1 (VCAM-1)의 발현을 억제함을 알 수 있었다. 즉, 3,4-DHPPA의 표적 단백질 중 하나가 VCAM-1임을 알 수 있었다 (Fig. 11).</td>
<td></td>
</tr>
<tr>
<td>3,4-DHPPA의 지질간화 및 항동맥경화를 토끼 및 동맥경화모델마우스에 검정하였으며, L2018은 항동맥경화가 매우 우수함을 확인하였고, LDL-항산화능이 뛰어난 L2024는 지질간화 효과를 나타내었다. Human LDL을 이용하여 continuous monitoring (234 nm)을 통해 diene 생성량을 측정한 결과, 그림 14에서 보여진 것처럼 3,4-DHPPA와 3,4-DHPPEA 1 μM의 농도에서 프로브콜로서 더 우수하게 diene 생성을 억제하는, 즉 LDL 산화아는 동안 Lag-time가 연연되는 것을 관찰할 수 있었다. 그림 15에서는 또다른 항산화 활성의 검정 방법인 electrophoretic mobility(전기적 이동도)를 통하여 활성을 관찰하여 본 결과, 3,4-DHPPEA는 농도의존적으로 유의하게 전기적 이동도가 감소하는 것이 나타났다. 위와 같은 방법의 실험 통해 L2024는 3 μM의 농도에서 프로브콜과 비슷한 정도로 LDL 산화성을 억제하는 것을 관찰할 수 있었다 (Fig. 20). Electrophoretic mobility(전기적 이동도)를 통하여 활성을 관찰하여 본 결과, L2024는 LDL-항산화능으로 유의하게 전기적 이동도가 감소하는 것이 나타났다 (Fig. 21). 따라서 3,4-DHPPA, 3,4-DHPPEA 및 L2024는 LDL-oxidation 활성 억제에 의한 고지혈증 및 동맥경화증 예방 및 치료제 개발을 위한 후보물질로서의 가능성을 보여주고 있다.</td>
<td></td>
</tr>
</tbody>
</table>

3,4-DHPPA는 전반적으로 혈청지단백질에 영향을 미치지 않았음을 알 수 있으며, 현재 PPAR-α agonist로 알려진 fenofibrate는 기존에 알려진 작용기전과 마찬가지로 혈청지단백의 개선효과가 뛰어나며, 특히 HDL-cholesterol의 함량을 증가시키는 효과가 있음을 알 수 있었다 (Fig. 16). 고콜레스테롤 식이 (HCHF)가 공급된 생쥐 그룹으로부터 채취한 소장 혈장으로부터 지단백질을 분리 후 그 프로필을 조사하여, 혈 중 콜레스테롤의 증가 양상과 유사한 지단백질 및 아포지단백질의 증감 양상을 확인하였다. 이 효과를 혈액내의 지단백질 분석 및 아포지단백질 발현량에 미치는 양상을 조사한 결과, 3,4-DHPPA와 L2024가 대 조군 lovastatin과 비교하여 HDL의 인자크기가 유지되며, apoA-I의 발현이 증가하는 등의 뚜렷한 지단백질 대사 개선효과를 보였다 (Fig. 24).
3,4-DHPPA의 항등성경화 작용이 NF-κB dependent transcription의 활성화와 관련된 것인지에 대해 Raw 264.7 cell을 LPS로 활성화시키고, ECV304 cell은 TNF-α로 활성화시킨 후, 3,4-DHPPA의 영향을 조사하였으나, NF-κB dependent transcription의 활성화는 무관함을 알 수 있었다 (Fig. 17).

취에 citrus flavonoids의 대사산물 투여가 생체내 항산화 유지를 위해 콜레스테롤 조절 효소인 ACAT, HMG-CoA reductase 활성을 억제하며, 따라서 생체내 콜레스테롤 혈중 억제 및 외부로부터 유입된 지질의 흡수를 저해 또는 LDL secrection의 가속을 통해 지질 강화 효과를 나타낼 것으로 예상되며, 혈장 및 간조직에서의 지질과산화 생성 억제 효과를 통해 이들 대사산물의 항산화능이 인지되었다 (위탁과제 Table 3-6, 3-7). 한편 LDLr KO mice에 citrus flavonoids의 대사산물 투여는 고콜레스테롤 식이의 급여로 인해 지질강화 효과는 관찰할 수 없었으며, 따라서 HMG-CoA reductase 활성도 측정이 불가능하였고, hepatic ACAT 활성은 현저하게 감소하였고, duodenum ACAT 활성은 크게 변화가 없는 것으로부터 식이로부터의 소장에서의 콜레스테롤 흡수는 억제하지 않으나, 간에서의 콜레스테롤 촉적 및 혈관으로의 LDL secrection 가속을 통한 항등성경화 효과를 나타낸 것으로 예상된다 (Fig. 13). LDLr KO mice에 L2018과 L2024의 투여는 total cholesterol 및 triglycerides는 변화가 없었다 (Fig. 23).

2024와 2018 화합물 보존은 혈장에서만 지질과산화 생성 억제효과를 나타내었음. 따라서 이들 시험물질(2024, 2018)의 석회보중이 항산화 빠르게에 미치는 일반적인 영향은 SOD와 GSH-Px활성도에 영향을 미치지 않으나, catalase 활성도를 증가시킨 것으로 평가됨. Heparic antioxidantive enzyme는 catalase의 변화양상은 hepatic TBARS 수준 변화와 연관된 것으로 평가된다. 이는 간세포의 과산화물성 억제에 대한 catalase의 작용을 시사한다 (위탁과제 Table 3-8).

1차년도의 2차년도에서 선별된 유용물질을 이용한 시험물 조성물 (Ferulic acid + PHBA, Ferulic acid + 2024, 2024 + 2018, 2024 + PHBA)을 급여한 결과 혈장 콜레스테롤 농도저하 효과적층 콜레스테롤 생합성 조절효소인 HMG-CoA reductase와 ACAT 활성도 저해와 관련성을 확인하였다. 기능성 혼합 조성물들은 혈장의 콜레스테롤과 중성지질 수준을 동시에 저하시켜 지질강화 효능이 상승되는 것으로 평가되었다. 기능성 혼합 조성물들의 보존은 혈장과 간조직의 과산화지질 수준을 유의적으로 억제하는 것으로 평가되였다 (위탁과제 Fig. 3-5, 3-6).
| 시험물질 및 3.4-DHPA의 금성독성 정보를 얻기 위한 목적으로 ICR 계통의 SPF 수컷 마우스에 시험물질을 0.25, 0.5, 1, 2 및 5 g/kg 으로 단회풍부여하여 14일간의 사망률, 일반증상, 재중, 부검소견을 관찰하였다. (1) 시험기간중 사망동물은 3.4-DHPA 5 g/kg 투여군에서 만 투여후 1, 2 및 3일째에 각각 1마리씩 총 3마리가 관찰되었다. L2018의 모든 투여군에서는 사망동물이 관찰되지 않았다. (2) 일반증상의 경우, 3.4-DHPA는 5 g/kg 투여군에서만 투여후 사망직전까지 활동력 감소가 관찰되었다. L2018 모든 투여군에서는 시험물질의 투여에 기인한 어떠한 증상도 관찰되지 않았다. (3) 재중변화의 경우, L2018 0.25 g/kg 투여군에서 경구 투여후 1일 및 3일째에 약간의 재중감소가 있었으나, 응용상관성은 없었고, 7일째부터 다시 재중이 회복되었다. 3.4-DHPA의 모든 투여군에서는 재중의 감소가 관찰되지 않았다. (4) 부검소견의 경우, 3.4-DHPA 5 g/kg 투여군의 사망 동물에 대한 부검을 실시한 결과 위장관의 출혈성 소견이 관찰되었다. L2018 시험물질의 경우에는 투여에 기인한 어떠한 이상소견도 관찰되지 않았다. 이상의 결과와 같이 시험물질 3.4-DHPA의 마우스에 대한 단회 경구 투여시 5 g/kg 용량에서 사망, 활동력 감소 및 위장관의 출혈성 소견이 관찰되었으며, LD₅₀값은 2~5g/kg 사이에 존재할 것으로 사료된다. L2018의 마우스에 대한 단회 경구투여는 5 g/kg 용량에서도 사망률, 일반증상 및 부검소견에 있어서 특성화된 변화를 야기시키지 않았고 LD₅₀값은 5 g/kg 이상에 존재할 것으로 판단된다.

<p>| 시제품 조성물이 식이섭취량, 체중증가량 및 장기 무게에 미치는 영향 (위탁과제 Table 3-2) |</p>
<table>
<thead>
<tr>
<th>시제품 조성물이 지질변수에 미치는 영향 (위탁과제 Table 3-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>시험물질들이 체중증가량 및 식이 섭취량에 미치는 영향은 없었음.</td>
</tr>
<tr>
<td>간과 신장조직의 부께는 식이군간 유의적 차이가 없었음.</td>
</tr>
<tr>
<td>Naringenin, 급여군과 (2024 + PHBA)급여군의 신장증가율이 대조군과 다른 실험군에 비해 유의적으로 높았음.</td>
</tr>
<tr>
<td>혈장 콜레스테롤 농도: 모든 식이군이 대조군에 비해 유의적으로 낮게 되었다 (위탁과제 Fig. 3-1).</td>
</tr>
<tr>
<td>혈장 증성지질 농도: (Ferulic acid +2024)군은 제외공계 Fig. 3-2).</td>
</tr>
<tr>
<td>혈장 HDL-콜레스테롤 농도: 식이군간 유의적 차이가 없었음.</td>
</tr>
<tr>
<td>총 콜레스테롤에 대한 HDL-콜레스테롤의 비: (2024 + PHBA) 식이군은 제외한 모든 식이군들이 대조군에 비해 유의적으로 증가하였음</td>
</tr>
<tr>
<td>동맥경화의 변화측도 인동맥경화지수(AI): (2024 + PHBA) 식이군을 제외한 나머지 식이군들이 대조군에 비해 유의적으로 저하하였음.</td>
</tr>
<tr>
<td>결과: 전체적인 혈중지질 강하효과는 hesperitin, naringenin, (ferulic acid + PHBA), (ferulic acid + 2024) or (2024 + 2018) >> (2024 + PHBA) control군의 순으로 평가되었음.</td>
</tr>
</tbody>
</table>
| 시제품 조성물이 간조직의 지질수준에 미치는 영향 (위탁과제 Table 3-4) | ① 간의 콜레스테롤 함량: 모든 식이균이 대조군에 비해 유의적으로 낮았음 (위탁과제 Fig. 3-3).
② 중성지질 함량: 모든 식이균이 대조군에 비해 유의적으로 낮았음 (위탁과제 Fig. 3-4).
결론: 기능성혼합물 보충에 의한 간조직의 지질함량이 대조군에 비해 유의적으로 감소되었다. |
| 시제품 조성물이 간독성에 미치는 영향 (위탁과제 Table 3-5) | ① GOT활동도는 (2024 + 2018)급여군을 제외한 나머지 식이균은 대조군에 비해 감소되었고, GPT활성도는 모든 식이균이 대조군에 비해 유의적으로 낮았음.
| 시제품 조성물이 콜레스테롤 조절효소 활성에 미치는 영향 (위탁과제 Table 3-6) | ① 간조직 중의 콜레스테롤 합성 용소효소인 HMG-CoA reductase 활성은 모든 식이균에서 유의적 감소를 보였음 (위탁과제 Fig. 3-5).
② 콜레스테롤 에스테르화를 촉매하는 효소인 ACAT 활성도는 전체적으로 대조군에 비해 유의적으로 높게 나타났으며, (2024 + 2018), (2024+ PHBA) 식이균이 현저히 높게 나타났음 (위탁과제 Fig. 3-6).
결론: HMG-CoA reductase, ACAT 활성도는 모든 식이균에 의해서 유의적으로 저하되었고, (2024 + 2018), (2024+ PHBA) 식이균의 ACAT 활성도 대조군에 비해 현저히 저하되는 것으로 평가되었음. |
| 시제품 조성물이 혈장과 간조직 중의 TBARS 농도에 미치는 영향 (위탁과제 Table 3-7) | ①혈장의 지질과산화물 생성정도: 모든 식이균의 TBARS 농도가 대조군에 비해 유의적으로 높았으며 (2024 + 2018)식이균이 현저히 낮은 경향을 나타내었음.
② 간조직의 지질과산화물 생성정도: 모든 식이균의 TBARS 수준이 대조군에 비해 유의적으로 높았음.
결론: 모든 시험물질 보충은 혈장과 간조직 지질과산화 생성 억제효과를 나타내었음. |
| 시제품 조성물이 간조직 중의 항산화효소 활성에 미치는 영향 (위탁과제 Table 3-8) | ① Hepatic SOD activity: (2024 + 2018)식이균만이 유의적으로 높았음.
③ Hepatic GSH-Px activity: (2024 + PHBA)식이균만이 유의적으로 높았음.
결론: 따라서 시험물질의 식이조성물 항산화 방어제에 미치는 일반적인 영향은 SOD와 GSH-Px활성도에 영향을 미치지 않으나, catalese 활성도 증가시킨 것으로 평가됨. |
Fig. 11. Anti-Atherogenic Effect of 3,4-DHPPA on the expressions of aortic (first portion) VCAM-1 gene determined by semiquantitative RT-PCR on Rabbits.
Fig. 12. Anti-Atherogenic Effect of 3,4-DHPPA on LDLr +/- mice.
Fig. 13. Effects of supplementation of hesperidin and its metabolites, hesperetin and 3,4-DHPPA, on hepatic ACAT and duodenum ACAT activities in high cholesterol-fed LDLr KO mice.
Fig. 14. Comparison between metabolites of citrus flavonoids and probucol in delaying of the formation of conjugated dienes in LDL incubated with copper ions. LDL (100 μg protein /ml) in PBS buffer (pH 7.4, 10 mM) was incubated with 5 μM of CuSO₄ and 1 μM of metabolites of citrus flavonoids or probucol (positive control). Absorbance at 234 nm by the conjugated dienes was monitored continuously for 240 min with recordings taken at 10 min intervals.

Fig. 15. Electrophoretic mobility during Cu²⁺-mediated LDL oxidation treated metabolites of citrus flavonoids. Protection of LDL against Cu²⁺-induced oxidation by JBB series and probucol (positive control). LDL (116 μg / ml) was incubated 5 μM CuSO₄ in 10 mM PBS buffer for 12 h at 37°C in the absence or presence of metabolites of citrus flavonoids and probucol. After incubation, 3.6 μg LDL protein was loaded onto 0.7 % agarose gel for electrophoresis. Subsequently, the gel was stained with Coomassie brilliant R 250 and then dried.
Fig. 16. Electrophoretic Pattern of Lipoproteins isolated from HCHF-fed LDLr -/- mice.

Fig. 17. No effect of 3,4-DHPPA on activation of NF-kB dependent transcription in RAW 264.7 cells and ECV304 cells.
Fig. 18. Anti-Atherogenic Effect of 2018 and 2024 on LDLr⁻/⁻ mice.

Fig. 19. Effect of 2018 and 2024 on the regression of atherosclerotic lesions in LDLr⁻/⁻ mice aortic sinus. LDLr⁻/⁻ mice were fed their respective atherogenic test diets for 8 weeks. The area of lesions were measured in the six serial section of the aortic sinus from an individual animal. Each bar represents mean lesion area for each group (n=6).
Fig. 20. Comparison of 2018, 2024, and probucol in delaying the formation of conjugated dienes in LDL incubated with copper ions. LDL (116 μg protein/ml) in PBS buffer (pH 7.4, 10 mM) was incubated with 5 μM of CuSO₄ and 3 μM of 2018, 2024, and probucol (positive control). Absorbance at 234 nm by the conjugated dienes was monitored continuously for 240 min with recordings taken at 10 min intervals.

Fig. 21. Electrophoretic mobility during Cu²⁺ - mediated LDL oxidation treated 2018 and 2024. Protection of LDL against Cu²⁺ -induced oxidation by 2018, 2024, and probucol (positive control). LDL (116 μg/ml) was incubated with 5 μM CuSO₄ in 10 mM PBS buffer for 12 h at 37°C in the absence or presence of 2018, 2024, and probucol. After incubation, 3.6 μg LDL protein was loaded onto 0.7 % agarose gel for electrophoresis. Subsequently, the gel was stained with Coomassie brilliant R 250 and then dried. Lane 1: native LDL, lane 2: ox-LDL lane 3: 2018 60 μM, lane 4: 2018 30 μM, lane 5: 2018 10 μM, lane 6: 2024 60 μM, lane 7: 2024 30 μM, lane 8: 2024 10 μM, Lane 9: probucol 30 μM, lane 10: probucol 10 μM.
Fig. 22. Effects of supplementation of synthetic derivatives on hepatic ACAT activities in high cholesterol-fed LDLr KO mice.

Fig. 23. Effects of supplementation of synthetic derivatives, 2018 and 2024 on plasma total cholesterol and triglyceride on LDLr +/- mice.
선별된 생체 유용성에 L2018 및 3.4-DHPPA의 마우스를 이용한 단화투여 경구독성 실험

시험 목적: 시험물질 L2018 및 3.4-DHPPA의 마우스에 대한 급성독성의 정보를 얻기 위하여 단회경구투여에 의한 독성시험을 실시하였다.
시험기관: 한국생명공학연구원 생물활성평가연구실 (시험 책임자: 김 희 정)
동물사육실: 한국생명공학연구원 유전자원동 실험동물실 1079호실

1. 요약
시험물질 L2018 및 3.4-DHPPA의 급성독성 정보를 얻기 위한 목적으로 ICR 계통의 SPF 수컷 마우스에 시험물질을 0.25, 0.5, 1.2 및 5 g/kg 으로 단회경구 투여하여 14일간의 사망률, 일반증상, 체중, 부검소견을 관찰하였으며, 시험한 결과는 다음과 같다.
(1) 시험기간중 사망동물은 3.4-DHPPA 5 g/kg 투여군에서만 투여후 1, 2 및 3일째에 각각 1마리씩 총 3마리가 관찰되었다. L2018의 모든 투여군에서는 사망동물이 관찰되지 않았다.
(2) 일반증상의 경우, 3.4-DHPPA는 5 g/kg 투여군에서만 투여후 사망직전까지 활동력 감소가 관찰되었 다. L2018 모든 투여군에서는 시험물질의 투여에 기인한 어떠한 증상도 관찰되지 않았다.
(3) 체중변화의 경우, L2018 0.25 g/kg 투여군에서 투여후 1일 및 3일째에 약간의 체중감소가 있었으나 용량상관성이 없었고, 7일째부터 다시 체중이 회복되었다. 3.4-DHPPA의 모든 투여군에서는 체중의 감소가 관찰되지 않았다.
(4) 부검소견의 경우, 3.4-DHPPA 5 g/kg 투여군의 사망 동물에 대한 부검은 실시한 결과 위점막의 충혈 소견이 관찰되었다. L2018 시험물질의 경우에는 투여에 기인한 어떠한 이상소견도 판찰되지 않았다.

이상의 결과와 같이 시험물질 3.4-DHPPA의 마우스에 대한 단회 경구투여시 5 g/kg 용량에서 사망, 활동력 감소 및 위점막의 충혈소견이 관찰되었으며, LD₅₀값은 2~5 g/kg 사이에 존재할 것으로 사료된다. L2018의 마우스에 대한 단회 경구투여는 5 g/kg 용량에서도 사망률, 일반증상 및 부검소견에서 특이학적인 변화를 야기시키지 않았고 LD₅₀값은 5 g/kg 이상에 존재할 것으로 판단된다.

2. 시험물질(제무자료 No.1) 및 매체대조물질
(1) 시험물질: L2018 및 3.4-DHPPA
(2) 외관 및 성상: L2018 - 노란색의 결정성 분말; 3.4-DHPPA - 갈색의 결정성 분말
(3) 보관조건: 싱ån보관
(4) 시험물질 공급자: 정태숙 (한국생명공학연구원 지질대사연구실)
(5) 매체대조물질: 0.5% tween 80

3. 시험계
(1) 사용동물의 종 및 개통: ICR계통의 특정병원체 부재(SPF) 마우스
(2) 사용동물의 공급원: 주식회사 대한바이오임프 (충청북도 음성군 삼성면 대야리 113)
(3) 시험계의 선택 이유: 마우스는 독성실험에 적당한 실험동물로서 일반적으로 시험 및 독성시험에 널리 사용되고 있다. 또한 본 계통의 마우스는 동 형별 시험 기요자료가 축적되어 있어서, 시험결과의 해석 및 평가 시에 이러한 자료를 이용하는 것이 가능하다.
(4) 사용동물의 주령 및 재현범위
 입수시 주령 : 5 주령
 입수 시 동물수 : 40마리
 투여개시 시 주령 : 6 주령
 투여개시 시간동물수 : 33마리
 투여개시 시 체중 : 29.2 ~ 31.7 g
(5) 검역 및 순화: 동물 입수시에 외관을 육안적으로 검사한 후 6일간 시험을 실시하는 동물실에서 순화시키면서 일반증상을 관찰하여 건강한 동물만을 시험에 사용했다.
(6) 사육환경
 1) 환경조건
 본 시험은 운도 23±3℃, 상대습도 50±10%, 조명시간 12시간 (오전 6시~오후 6시), 환기횟수 10~20회/hr, 및 조도 150~300 Lux로 설정된 한국생명공학연구원 실험동물동 1079호실에서 사육하였다. 시험자들은 모두 고압 증기철단(121℃, 20분)된 작업복, 투건, 마스크 및 장갑 등을 착용하고 작업을 실시하였다.
2) 사육상자, 사육밀도 및 사육상자의 식별

순화, 검역기간 동안에는 플리카보네이트계 구두통형 사육상자 (260W x 410L x 200H mm)에 15마리씩 수용하였다. 투여 및 관찰기간 중에도 플리카보네이트계 구두통형 사육상자 (200W x 260L x 130H mm)에 3마리씩 수용하였다. 시험기간 중 사육상자는 시험번호 및 동물번호를 기입한 라벨지를 붙여 식별하였다.

3) 사료 및 음수

해당이의 급여방법: 사료는 방사산 면거진 (PicoLab Co, Ltd., USA) 실험동물용 고양사료를 자유선택 시켰다.

해당이의 급여방법: 음수는 상수도수를 고압병관기로 면거진 후 물병을 이용하여 자유선택시켰다.

4. 투여방법 및 투여용 시험물질 조제

(1) 투여방법: 단회 경구 투여

(2) 투여용 시험물질 조제: 시험물질은 측량하여 용매인 0.5% tween 80에 용해하여 최고 용량군의 시험물질 투여액을 조제하고, 이를 단계적히하여 저용량군들의 투여액을 조제하였다. 조제는 투여시간에 실시하였다.

5. 시험군 구성

(1) 시험물질 투여군: 2 가지 시험물질 공히 0.25, 0.5, 1, 2 및 5 g/kg

(2) 메체대조군: 0.5% tween 80

(3) 군구성:

<table>
<thead>
<tr>
<th>군</th>
<th>성별</th>
<th>동물수</th>
<th>동물번호</th>
<th>투여액량</th>
<th>투여량</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>male</td>
<td>3</td>
<td>1~3</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>메체대조군</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>4~6</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>G1</td>
<td></td>
<td>3</td>
<td>7~9</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>G2</td>
<td></td>
<td>3</td>
<td>10~12</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>G3</td>
<td></td>
<td>3</td>
<td>13~15</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>G4</td>
<td></td>
<td>3</td>
<td>16~18</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>19~21</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>G6</td>
<td></td>
<td>3</td>
<td>22~24</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>G7</td>
<td></td>
<td>3</td>
<td>25~27</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>G8</td>
<td>male</td>
<td>3</td>
<td>28~30</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>G9</td>
<td></td>
<td>3</td>
<td>31~33</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>G10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. 판찰항목 및 검사항목

1) 일반증상 및 사망동물의 판찰: 투여방법은 최종 투여후 1시간에서 6시간까지는 매시간마다, 투여 외
일부터 14일까지는 매일 1회 일반증상의 변화, 독성증상 및 사망동물의 유무를 관찰하였다.

2) 제중측정: 시험에 사용된 모든 동물에 대하여 투여시간과 투여후 1, 3, 7 및 14일에 제중을 측정하였 다.

3) 부검소견관찰: 투여후 14일에 모든 생존동물을 CO₂ 가스를 이용하여 마취한 후 개복하여 복대동정 맥 절단으로 방혈치사 시킨 후 육안적으로 모든 내부 장기를 관찰하였다.

7. 결과

(1) 사망률 (Table 1)

시험기간중 사망동물은 3.4-DHPPA 5 g/kg 투여군에서만 투여후 1, 2 및 3일째에 각각 1마리씩 총 3마리가 관찰되었다. L2018의 모든 투여군에서는 사망동물이 관찰되지 않았다.

(2) 일반증상 (Table 2)

3.4-DHPPA는 5 g/kg 투여군에서만 투여후 사망작전까지 활동력 감소가 관찰되었다. L2018 모든 투여군에서는 시험물질의 투여에 기인한 어떠한 증상도 관찰되지 않았다.

(3) 제중변화 (Table 3)

L2018 0.25 g/kg 투여군에서 정구 투여후 1일 및 3일째에 약간의 제중감소가 있었으나, 7일째부터 다시 제중이 회복되었다. 3.4-DHPPA의 모든 투여군에서는 제중의 감소가 관찰되지 않았다.

(4) 부검소견 (Table 4)

3.4-DHPPA 5 g/kg 투여군의 사망 동물에 대한 부검을 실시한 결과 위장막의 충혈성 소견이 관찰되었다. L2018 시험물질의 경우에는 투여에 기인한 어떠한 이상소견도 관찰되지 않았다.

8. 고찰 및 결론

시험물질 L2018 및 3.4-DHPPA의 급성독성 정보를 얻기 위한 목적으로 ICR 계통의 SPF 수컷 마우스에 시험물질을 0.25, 0.5, 1, 2 및 5 g/kg로 단회경구투여하여 14일간의 사망률, 일반증상, 제중, 부검소견을 관찰하였다.

시험결과 3.4-DHPPA 5 g/kg 투여군에서 사망 및 활동력 감소 증상이 관찰되었으며, 사망 동물의 부검시 위장막의 충혈성 소견이 관찰되었다. 제중변화와 있어서는 모든 투여군에서 제중감소는 관찰되지 않았다. L2018의 경우에는 일부의 투여군에서 초기의 경미한 제중감소가 있었으나 용량 상관성은 없었으며, 사망율, 일반증상 및 부검소견에 있어서 시험물질의 투여에 기인한 어떠한 독성학적인 변화도 관찰되지 않았다.

이상의 결과와 같이 시험물질 3.4-DHPPA의 마우스에 대한 단회 경구투여시 5 g/kg 용량에서 사망, 활동력 감소 및 위장막의 충혈성 소견이 관찰되었으며, LD₅₀값은 2~5g/kg 사이에 존재할 것으로 사료된다. L2018의 마우스에 대한 단회 경구투여는 5 g/kg 용량에서도 사망률, 일반증상 및 부검소견에 있어서 독성학적인 변화를 야기시키지 않았고 LD₅₀값은 5 g/kg 이상에 존재할 것으로 판단된다.
Table 1. Mortalities of male ICR mouse (group summary)

<table>
<thead>
<tr>
<th>Group</th>
<th>Dose (g/kg)</th>
<th>Final mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0/3</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>0/3</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0/3</td>
</tr>
<tr>
<td>L2018</td>
<td>1.0</td>
<td>0/3</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>0/3</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>0/3</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>0/3</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0/3</td>
</tr>
<tr>
<td>3,4-DHPPA</td>
<td>1.0</td>
<td>0/3</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>0/3</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>3/3</td>
</tr>
</tbody>
</table>

Table 2. Clinical findings of male ICR mouse (group summary)

<table>
<thead>
<tr>
<th>Group</th>
<th>Dose (g/kg)</th>
<th>Clinical finding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>No abnormality detected</td>
</tr>
<tr>
<td>G1</td>
<td>0.25</td>
<td>No abnormality detected</td>
</tr>
<tr>
<td>G2</td>
<td>0.5</td>
<td>No abnormality detected</td>
</tr>
<tr>
<td>L2018</td>
<td>1.0</td>
<td>No abnormality detected</td>
</tr>
<tr>
<td>G3</td>
<td>2.0</td>
<td>No abnormality detected</td>
</tr>
<tr>
<td>G4</td>
<td>5.0</td>
<td>No abnormality detected</td>
</tr>
<tr>
<td>G5</td>
<td>0.25</td>
<td>No abnormality detected</td>
</tr>
<tr>
<td>G6</td>
<td>0.5</td>
<td>No abnormality detected</td>
</tr>
<tr>
<td>3,4-DHPPA</td>
<td>1.0</td>
<td>No abnormality detected</td>
</tr>
<tr>
<td>G8</td>
<td>2.0</td>
<td>No abnormality detected</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>Decreased activity</td>
</tr>
</tbody>
</table>
Table 3. Body weights of male ICR mouse (group summary) (Mean ± SD : g)

<table>
<thead>
<tr>
<th>Group</th>
<th>Dose (g/kg)</th>
<th>Days after treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>매체대조군 (0.5% tween80)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>30.3± 0.8</td>
<td>30.7± 1.1</td>
</tr>
<tr>
<td>0.25</td>
<td>32.2± 2.1</td>
<td>30.5± 0.2</td>
</tr>
<tr>
<td>0.5</td>
<td>29.6± 0.5</td>
<td>32.6± 2.3</td>
</tr>
<tr>
<td>L2018</td>
<td>1.0</td>
<td>30.3± 0.6</td>
</tr>
<tr>
<td>2.0</td>
<td>30.9± 1.1</td>
<td>32.0± 0.7</td>
</tr>
<tr>
<td>5.0</td>
<td>29.7± 0.4</td>
<td>29.7± 0.9</td>
</tr>
<tr>
<td>0.25</td>
<td>30.5± 1.4</td>
<td>31.6± 0.2</td>
</tr>
<tr>
<td>0.5</td>
<td>32.3± 0.8</td>
<td>32.8± 0.8</td>
</tr>
<tr>
<td>3,4-DHPPA</td>
<td>1.0</td>
<td>31.2± 0.4</td>
</tr>
<tr>
<td>2.0</td>
<td>30.7± 0.5</td>
<td>31.3± 0.6</td>
</tr>
<tr>
<td>5.0</td>
<td>30.2± 1.3</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 4. Necropsy findings of male ICR mouse (group summary)

<table>
<thead>
<tr>
<th>Group</th>
<th>Dose (g/kg)</th>
<th>Gross finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>매체대조군</td>
<td>0</td>
<td>No abnormality detected</td>
</tr>
<tr>
<td>G1</td>
<td>0.25</td>
<td>No abnormality detected</td>
</tr>
<tr>
<td>G2</td>
<td>0.5</td>
<td>No abnormality detected</td>
</tr>
<tr>
<td>L2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G3</td>
<td>1.0</td>
<td>No abnormality detected</td>
</tr>
<tr>
<td>G4</td>
<td>2.0</td>
<td>No abnormality detected</td>
</tr>
<tr>
<td>G5</td>
<td>5.0</td>
<td>No abnormality detected</td>
</tr>
<tr>
<td>G6</td>
<td>0.25</td>
<td>No abnormality detected</td>
</tr>
<tr>
<td>G7</td>
<td>0.5</td>
<td>No abnormality detected</td>
</tr>
<tr>
<td>3,4-DHPPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G8</td>
<td>1.0</td>
<td>No abnormality detected</td>
</tr>
<tr>
<td>G9</td>
<td>2.0</td>
<td>No abnormality detected</td>
</tr>
<tr>
<td>G10</td>
<td>5.0</td>
<td>Congestion/bleeding of stomach</td>
</tr>
</tbody>
</table>
시제품의 환제조 공정

제1공정 원료조합: 본 공정에서는 동물사료 제조에 참가된 기능성 물질의 비율을 기준으로 각 시험을 절을 장행한다.

제2공정 분쇄 및 혼합공정: 제1공정에서 정량된 원료들을 분쇄기에 넣어서 아주 세밀하게 분쇄한 다음을 넣어서 적절하게 완전 혼합을 한다.

제3공정 연합공정: 제2공정에서 완전 혼합된 배합물을 연합기에 넣어서 적절하게 완전 연합한다.

제4공정 환주공정: 제3공정에서 연합된 연합물을 환주기에 넣어서 환주방의 환주를 형성한다.

제5공정 결합공정: 제4공정에서 형성된 환주를 결합기에 넣어서 환모양의 환주를 형성한다.

제6공정 성환공정: 제5공정에서 전환된 환을 성환기에 넣어서 표면을 배그럽게 한다.

제7공정 건조공정: 제6공정에서 표면이 배그럽게 된 환을 건조기에 넣어서 60℃ 이하의 온도로 완전 건조시킨다.

제8공정 코팅공정: 본 공정에서는 상기 제7공정에서 건조시킨 환을 흑갈색의 색깔로 코팅을 시킨다. 이때 코팅은 색깔차체가 자연적으로 흑갈색으로 우스나오는데도 불구하고, 적당량의 정제수를 약 20L 정도 넣은 후, 석유 색소를 사용하지 않고 카라멜 분말을 약 200g 정도 장가하여 7-8시간 가열하여 우스나온다. 이 경우 흑갈색의 색깔로 코팅이 되며, 초코와 카라멜 분말의 특성화된다. 이 때문에 일차에 맞은 환제품이 만들어진다.

제9공정 포장공정: 상기 제8공정에서 코팅된 흑갈색의 환을 일정량 톤에 넣어 포장한다.

<table>
<thead>
<tr>
<th>제6공정: 전환된 환을 성환기에 넣어서 표면을 배그럽게 성환</th>
</tr>
</thead>
<tbody>
<tr>
<td>제7공정: 환을 건조기에 넣어서 60℃ 이하의 온도로 완전 건조</td>
</tr>
<tr>
<td>제8공정: 코팅공정</td>
</tr>
<tr>
<td>원료명</td>
</tr>
<tr>
<td>초코분말</td>
</tr>
<tr>
<td>카라멜분말</td>
</tr>
<tr>
<td>물(정제수)</td>
</tr>
<tr>
<td>제9공정: 코팅된 흑갈색의 환을 일정량 톤에 넣어 포장</td>
</tr>
</tbody>
</table>

Fig. 12. 시제품 환제조 공정.

- 75 -
<table>
<thead>
<tr>
<th>번호</th>
<th>세부연구개발목표</th>
<th>달성내용</th>
<th>달성도 (%)</th>
</tr>
</thead>
</table>
| 1 | ○ Bioflavonoids 생체내 대사산물의 in vitro 및 소동물을 이용한 in vivo 환경평가 | - *In vitro* 및 *in vivo* 환경 검색을 위한 10 여개의 *Citrus flavonoids* 생체내 대사산물 및 그 유사체를 확보하였음.
- Bioflavonoids 생체내 대사산물의 *in vitro* (LDL-oxidation, ACAT, HMG-CoA reductase) 환경 검색을 통해 *in vivo* 환경 평가를 위한 후보물질을 선별할 수 있었음.
- 실험동물인 쥐를 대상으로는 혈중 지질 강하 효과를 평가하고, 토끼 및 LDLr/- 마우스를 이용하여 우선적으로 동맥경화 예방 및 치료를 위한 지방성 구축 억제 효과를 관찰하였으며, 부수적으로 지질 강하 효과도 관찰함. 대사산물 중 3,4-DHPPA와 p-HPPA는 현재 고지혈증 치료제로 사용되고 있는 lovastatin을 투여한 경우보다 낮은 지방성 침착율을 보여 그 효능이 매우 뛰어난 물질임을 확인함. | 100 |
| 2 | ○ Bioflavonoids 유도체 함성 | - Hesperetin의 유도체 또는 citrus bioflavonoid 생체내 대사산물의 유도체 약 40 종을 함성하였음. | 100 |
- 1% 고콜레스테롤 식이를 준 NZW 토끼에 있어서 항등맥경화 효과를 결정한 결과, 대조군과 비교하여 2018 실험군에서 유의성 있게 43% 지방성 구축이 감소된 양상을 나타내었으며, 2024 실험군은 대조군에 비해 8% 지방성 구축이 감소된 양상을 나타내었음.
- SD주 수컷 화학에 5주간 동안 고콜레스테롤 식이와 함께 투여하면서 혈중지질 감하 효과를 결정한 결과 혈중지질 감하 효과가 우수하며, 2024 or 2018 > probucol > hesperetin > Lovastatin > control군의 순으로 평가되었음.
- *In vitro* 효소활성을 나타내는 물질을 선별하여 *in vivo* 약효 검색함. | 100 |
| 4 | ○ 선별된 생체활성 유용물질(대사산물 또는 함성유도체)의 독성 및 안전성 검정 | 시험물질 3,4-DHPPA의 마우스에 대한 단회 경구투여시 5 g/kg 용량에서 사망, 항등맥경화 감소 및 위장막의 축적혈 소견이 관찰되었으며, LD₅₀값은 2~5g/kg 사이에 존재할 것으로 사료된다. I2018의 마우스에 대한 단회 경구투여시 5 g/kg 용량에서 사망률, 일반증상 및 부검소견에 있어서 독성학적인 변화를 야기 시키지 않았고 LD₅₀값은 5 g/kg 이상에 존재할 것으로 판단됨. | 100 |
- Citrus flavonoids의 대사산물 투여가 생체내 항산성 유지를 위해 콜레스테롤 조절 효소인 ACAT, HMG-CoA reductase 활성을 억제하며, 따라서 생체내 콜레스테롤 합성 억제 및 외부로부터 유입된 지질의 혈소를 저해 또는 LDL secretion의 기작을 통해 지질 강화 효과를 나타낸 것으로 예상되며, 혈장 및 간조직에서의 지질과산화 생성 억제 효과를 통해 이들 대사산물의 항산화능이 인지되었다.

- Citrus flavonoids 합성유도체 2018과 2024의 투여가 생체내 항산성 유지를 위해 콜레스테롤 조절 효소인 HMG-CoA reductase, ACAT 활성을 억제하며, 따라서 생체내 콜레스테롤 합성 억제 및 외부로부터 유입된 지질의 혈소를 저해 또는 LDL secretion의 기작을 통해 지질 강화 효과를 나타낸 것으로 예상됨.

3,4-DHPPA는 동맥경화 마우스 모델 및 토끼 모델에서 동맥벽에 형성되는 지방조직의 면적을 감소시키는 효과가 있음을 알 수 있었고, 이는 동맥경화의 발생 초기에 단백구 세포가 동맥벽면에 부착하는데 관여하는 vascular cell adhesion molecule-1(VCAM-1)의 발현을 억제함을 알 수 있었다. 즉, 3,4-DHPPA의 표적 단백질 중 하나가 VCAM-1임을 알 수 있었음.

- L2018과 L2024의 지질강하 및 항동맥경화학 토끼 및 동맥경화모델마우스에 검정하였으며, L2018은 항동맥경화가 매우 우수함을 확인하였고, LDL-항산화능이 뛰어난 2024는 지질강하 효과를 나타내었다. 고콜레스테롤 식이(HCHF)가 공급된 생쥐 그룹으로부터 채취한 소량 혈장으로부터 지단백질을 분리 후 그 프로필을 조사하여, 혈중 콜레스테롤의 증가 양상과 유사한 지단백질 및 아포지단백질의 증가 양상을 확인하였다. 그 결과 혈액내의 지단백질 분획 및 아포지단백질 발현량에 미치는 영향을 조사한 결과, 3,4-DHPPA와 L2024가 대조군(lovasatin)과 비교하여 HDL의 일자크기가 유지되며, apolipoprotein-A-I의 발현이 증가하는 등의 뚜렷한 지단백질 대사 개선 효과를 보였음.
<table>
<thead>
<tr>
<th>선별된 생체활성 유용물질 및 시료품 조성물의 효능 검정</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Bioflavonoid 대사산물 및 합성유도체를 이용한 시료품 조성물의 효능을 측정, 동맥경화모델 마우스 및 포기문을 이용하여 검정하였다.</td>
</tr>
<tr>
<td>- 1차년도와 2차년도에서 선별된 유용물질을 이용한 시료품 조성물의 균열성 결과 결과 혈장 총 콜레스테롤 농도저하의 각질 성 탄소의 콜레스테롤 생성성 조절효소인 HMG-CoA reductase와 ACAT 활성도 저해와 관련성을 확인하였으며, 동맥병변 형상 약제등도 휴식장치로 감소할 수 있음을 알 수 있었다.</td>
</tr>
<tr>
<td>기능성 혼합 조성물들은 혈장과 간조직의 콜레스테롤과 종성지질 수준을 통제하여 지질저하 효능이 상승되는 것으로 평가되었다.</td>
</tr>
<tr>
<td>- 기능성 혼합 조성물들의 보충은 혈장과 간조직의 과산화지질 수준을 유의적으로 억제하는 것으로 평가되었다. 3,4-DHPPA는 전반적으로 혈청지단백질에 영향을 미치지 않았음을 알 수 있으며, 현재 PPAR-α agonist로 알려진 fenofibrate는 기존에 알려진 작용기전과 마찬가지로 혈청지단백의 개선효과가 나타나며, 특히 HDL-cholesterol의 함량을 증가시키는 효과가 있음을 알 수 있었다.</td>
</tr>
<tr>
<td>- 1차년도와 2차년도에서 선별된 유용물질(Ferulic acid + PHBA, Ferulic acid + 2024, 2024 + 2018, 2024 + PHBA)을 균열성 결과 혈장 총 콜레스테롤 농도저하 및 간조직의 콜레스테롤 생성성 조절효소인 HMG-CoA reductase와 ACAT 활성도 저해와 관련성을 확인하였다. 기능성 혼합 조성물들은 혈장과 간조직의 콜레스테롤과 종성지질 수준을 동시에 지질저하 지질저하 효능이 상승되는 것으로 평가되었다. 기능성 혼합 조성물들의 보충은 혈장과 간조직의 과산화지질 수준을 유의적으로 억제하는 것으로 평가되었음.</td>
</tr>
</tbody>
</table>
제 5 장 연구개발결과의 활용계획

제 1 절 기술적 효과

- 생체내 대사산물로부터 유래한 독성이 없거나, 적은 심장순환기 질환 관련 유용성질의 확보
- 심장순환기 질환 관련 in vivo 약효 면모 기술 확립
- 심장순환기 질환 관련 생물학적, 분자생물학적 작용기작 규명 방법 기술의 확보
- Bioflavonoid 대사산물 및 유도체와 보조재료 성분 조성비에 따른 기능성식품 제조기술 확보
- 유용성질의 고지혈증, 동맥경화 예방, 치료 효과의 과학적인 규명을 통해 차세대 의약품 개발분야에 활용
- Bioflavonoid 대사산물 및 그 유도체의 지질대사 개선효과를 테스트함으로서 심혈관계질환 개선제 후보물질의 다양한 생체 작용기작이 일차적으로 규명됨.
- 심혈관 질환 개선용 환경 물질 개발로 세계적인 선도자 역할과 이 분야연구의 선진국화
- 본 연구결과를 기반으로 하여 개발된 기술은 산업체제의 기술이전
- 기능성 식품 및 건강식품 개발을 위한 신물질 탐색의 지속된 양상을 도모함.

제 2 절 경제적 효과

- 심혈관계 질환 관련 에방물질의 국내 신약개발로 인한 수입대체효과 및 수출에 대한 의외 확득
- 유용성을 포함하는 의약식품 (medical food), 기능성 식품 (functional food), 보조식품 (dietary supplement) 개발을 위한 새로운 item 창출로 신산업군 창출 가능
- 유용물질특허, 제조특허를 통한 산업제산권 확보
- 심혈관 예방 및 치료용 기능성 식품소재 탐색으로 국제시장으로의 진출 및 생명공학산업화 기술 육성에 기여
- 작용기작 및 모델동물로 이용한 기능성이 입증된 소재를 산업체에 이전하여, 임상시험 후보로 도출하며, 국내 기능성식품 산업을 활성화하고, 수출도 기능성 제조품을 형성하고자 함.
제 6 장 연구개발과정에서 수집한 해외과학기술정보

표 1. 국내의 기능성 식품의 시장 규모

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>한국(억원)</td>
<td>11,200</td>
<td>9,800</td>
<td>6,200</td>
<td>8,700</td>
<td>10,500</td>
<td>12,000</td>
<td>13,500</td>
</tr>
<tr>
<td>미국(억달러)</td>
<td>235</td>
<td>258</td>
<td>279</td>
<td>299</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>일본(억엔)</td>
<td>6,200</td>
<td>6,500</td>
<td>6,900</td>
<td>7,500</td>
<td>8,500</td>
<td>9,000</td>
<td>9,700</td>
</tr>
</tbody>
</table>

(Source: Nutrition Business Journal, 2001)

- 외국기업들은 이 nutraceutical에 대한 여러 입점, 즉 투자자 본의 빠른 회수(quick financial returns)로 재투자가 용이하다는 점과 FDA 및 여러 기관의 nutraceutical 상품화에 대한 규제가 크지 않은 점, 약을 개발하는데 들어가는 엄청난 비용 및 시간 등의 aspect 때문에 이 분야에 투자를 집중하고 있다 (Nature Biotechnology 16: 728-731, 1998).

- 식품산업은 국민의 식생활과 보건영양을 책임지는 중요한 분야이며, 생명공학기술 분야의 중심이 되는 학문 및 산업이다. 또한 근래에 생활수준이 급속히 향상됨에 따라 건강에 대한 관심의 고조로, 이론과 Nutraceutical이라 불리우고 있는 영양학적으로 또는 의약적으로 기능성이 향상된 식품들(Nutrionally or medicinally enhanced foods)을 소비자들은 선호하고 있다.

- J&J/Raisio (Benecol), DuPont (trans 지방산이 없는 콩가루와 카놀라유), Monsanto (SeaGold, Laurical), Pharmarx (Cholestin), Market Biosciences (Neuromins) 등은 지질대사 개선 뿐만 아니라 심장질환의 위험을 낮추는 기능성식품 산업에 역점 두고 있으며, 최근 소비자들은 의의의 가능성이 없이도 합법적으로 약국에서 판매가 가능한(over-the-counter) 기능성 식품으로서의 식이보충제 (dietary supplement)나 약초를 이용한 치료법의 이용을 선호하고 있고, 내과의사들은 환자들의 건강 유지와 치료 비용을 줄이기 위해 nutraceuticals의 이용을 권장하고 있다.
Phoenix Pharmaceuticals는 2002년도 후반기에 담즙콜레스테롤의 배설을 증가시켜 혈중콜레스테롤을 낮추는(FXR antagonist) Guggulsterone을 guggul tree (Commiphora mukul)로부터 분리, 시판하여 인기를 얻고있으며, 동맥경화/고혈압 중 예방 및 치료의 목표단백질로 주목받고있는 ACAT 저해제인 Avasimibe (Pfizer)가 임상 3상 시험이, Lp-PLA2 저해제인 SB-435495 (GlaxoSmithKline)가 임상 1상 시험이 진행 중이다. 따라서 두목성의 친화성으로부터 이들 타겟단백질의 활성유용물질 도출시 기능성식품의 개발 가능성이 매우 높다.

일본은 기능성 식품 소재의 개발기술이 매우 앞서 있으며, 1984년 문부성 특정 연구과제로 식품의 기능성에 관한 연구를 시작하여 현재 관련 연구를 활발히 수행하고 있으며, 연구결과를 바탕으로 현재 47개 품목군이 건강식품으로 인정되어 있고, 특정 보건식품으로 167개 품목이 후생성으로부터 허가되어 재조 판매되고 있다 (일본과학기술예, 일본과학기술조사보고서, 1999).

인체의 분자수준에서 영양소 및 비영양소의 역할 규명, HGP의 완성, SNP의 Genomic 정보의 측정에 따라 1999년에 Dr. Nancy Fogg-Johnson이 차세대 식품연구 분야는 Nutrigenomics이며, 기능성제품 방향은 맞춤형 식품이 될 것으로 예측한 이래 연구개발이 활발히 이루어지고 있으므로 (DellaPenna, 1999; Peregrin, 2001; Muller and Kersten, 2003), 향후 선진국과의 기술 격차를 줄이기 위해서는 지금부터라도 국내의 기능성 식품 연구분야에 대한 집중적인 투자가 필요하다.

식품기업의 진강보조식품 시장 진입, 다국적 유통업체 및 제약산업체의 적극적인 참여로 인해 기능성식품은 경제기에 들어선 식품산업 전반에 커다란 지각 변동을 일으키고 있다. 일반적으로 식품산업은 제약산업의 5~10 배의 규모를 가지고 있으며, 선진국으로 갈수록 식품산업의 규모가 크다. 따라서 기능성 식품으로 축발된 식품과 의약품의 산업간, 학문간 부분적 통합 움직임이 활발해 지고 있다. 즉, 전장한 삶을 추구하는 기본적인 욕구와 노령화 사회로의 전환에 따른 심장순환기질환 등 성인병의 증가에 따른 의약품 수요의 기능성 식품 수요로의 전환은 현재 51억달러에 달하는 전세계 심혈관계통 의약품 시장(관세 1위: Zocor (66.7억달러), 판매 2위: Lipitor (64.5억달러), 두 품목 모두 고지혈증 치료제임)의 심혈관계 기능성식품으로의 전환을 예고하고 있다. 현재의 추세로 보아 2005년도 미국의 기능성식품 시장은
500억달러를 넘어설 것으로 예상되며, 향후 10년간 매년 지속적으로 약 10%의 성장을 지속할 것으로 전망하고 있다 (Source: Nutrition Business Journal; PharmaBusiness; IMS Health; 제약산업정보, 2002. 11).

Carew TE, Schwenke DC, Steinberg D. (1987) Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: evidence that antioxidant in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbits. Proc Natl Acad Sci USA 84: 7725.

보건복지부 약물정책과. 한국식품과학회 2002년 추계 건강기능성식품 학술세미나. 건강기능식품법의 제정 배경 및 주요내용.

장경원. 보건산업기술동향 2002년 여름 통권 제 10호 p20–24. 외국 기능성식품 관련 연구동향.

제 출 문

과학기술부 장관 귀하

본 보고서는 "Citrus Bioflavonoids 유도체 및 대사산물로부터 심장순환기질환 예방치료용 유용 물질의 개발에 관한 연구"과제 (위탁과학 "Bioflavonoids 대사산물과 혈성유도체의 고혈청중 예방 및 치료 효능검증에 관한 연구") 의 보고서로 제출합니다.

2003. 7.

위탁연구기관명 : 경북대학교
위탁연구책임자 : 최명숙
연구원 : 박용복

정윤주, 김해진
최갑선
여백
보고서 초록

<table>
<thead>
<tr>
<th>과제관리번호</th>
<th>해당단계 연구기간</th>
<th>2000년 8월 - 2003년 5월</th>
<th>단계 구분</th>
<th>(3단계) / (3단계)</th>
</tr>
</thead>
<tbody>
<tr>
<td>연구사업명</td>
<td></td>
<td>증 식업 면</td>
<td>중점국가연구 개발사업</td>
<td></td>
</tr>
<tr>
<td>세부사업명</td>
<td></td>
<td>생물학 실험소사업</td>
<td></td>
<td></td>
</tr>
<tr>
<td>연구과제명</td>
<td></td>
<td>Citrus Bioflavonoids 유도체 및 대사산물로부터 신장생식기질환 예방차단용 유용성물질 개발</td>
<td></td>
<td></td>
</tr>
<tr>
<td>세부(단위)과제명</td>
<td></td>
<td>Bioflavonoids 대사산물과 함성유도체의 고지혈증 예방 및 치료효과진단</td>
<td></td>
<td></td>
</tr>
<tr>
<td>연구책임자</td>
<td>최 명숙</td>
<td>해당단계 참여연구원수</td>
<td>총 : 6 명</td>
<td>해당단계 연구비</td>
</tr>
<tr>
<td></td>
<td></td>
<td>내부 : 2 명</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>외부 : 4 명</td>
<td></td>
<td></td>
</tr>
<tr>
<td>연구기관명 및 소속부서</td>
<td></td>
<td>경북대학교 식품영양학과</td>
<td>참여기업체</td>
<td></td>
</tr>
<tr>
<td>국제공동연구</td>
<td>상대국명 :</td>
<td>상대국 연구기관명 :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>위탁 연구</td>
<td>연구기관명 :</td>
<td>연구책임자 :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>요약(연구결과를 중심으로 개조의 50자 이내)</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. 연구개발의 목적: Citrus bioflavonoid와 이들과 체내 대사산물 및 그 유도체의 지질적 작용 기작을 실험동물 대상으로 중합적으로 규명하며 이 물질을 이용한 기능성 식품개발 자동화

2. 연구내용: 동물모델을 이용한 bioflavonoid 대사산물, bioflavonoid 함성유도체 및 서식 동물 혼합 조성물의 in vivo 효능 평가 및 작용기작 확하

3. 연구방법:
① 기능성 물질 채택을 위한 실험동물 사육 실험
② 혈액생화학적 분석: 혈중 total cholesterol, HDL-cholesterol, triglyceride, GOT, GPT
③ 조직기질 염증분석: cholesterol, triglyceride
④ 조직의 저질대사 및 항산화체와 관련 효소활성측정: ACAT, HMG-CoA reductase, SOD, catalase, GSH-Px
⑤ 혈장 및 간조의 중의 TBARS 수준 정상

4. 연구결과:
① 1차년도에는 flavonoid 대사단물, 2차년도에는 flavonoid 대사단물의 항성 유도체, 3차년도에는 1-2차년도 연구결과를 통해 선별된 유용성물질을 이용한 서식 중 조성물들을 각각 규명하였음. 그 결과 혈장 총 콜레스테롤, 농도가가 귀하에 관해되었고 이들 혈상에 대해 관련 작용으로는 간조직의 콜레스테롤 성형성 조절효소인 HMG-CoA reductase와 ACAT와의 혈소도 저해는 관해를 확인하였음.
② 관련 기능성 flavonoid 대사산물 및 항성 유도체들은 혈장과 간조직의 콜레스테롤과 증식지질 수준을 동시에 저하시켜서 지질적 효능이 상승되는 것으로 평가되었음.
③ 봉 paran 아니라, 이들 flavonoid 대사산물, 관련 항성 유도체 및 기능성 혼합 조성물들의 브로드 혈장과 간조직의 과산화지질 수준을 유의적으로 억제하는 것으로 평가되었음.

색인어 (각 5개 이상)
<table>
<thead>
<tr>
<th>한글</th>
<th>영어</th>
</tr>
</thead>
<tbody>
<tr>
<td>한글</td>
<td>Bioflavonoids, Hyperlipidemia, Flavonoid metabolite, Efficacy test</td>
</tr>
</tbody>
</table>

- 91 -
여백
요 약 문

I. 제 목:
Bioflavonoids 대사산물과 합성유도체의 고지혈증 예방 및 치료 효능검증

II. 연구개발의 목적 및 필요성

<table>
<thead>
<tr>
<th>목 적</th>
<th>필 요 성</th>
</tr>
</thead>
</table>
| Citrus bioflavonoid와 이들의 제내 대사산물 및 그 유도체의 지질저하 작용기작을 실험동물에 대상으로 종합적으로 규명하며 이 물질들을 이용한 기능성 식품 개발자료 확립 | · 최근 일본과 우리나라에서도 고지방 및 고콜레스테롤에 의한 여러 가지 성인병이 심각한 문제로 대두되고 있음.
· 최근 콜레스테롤 저하 약제 등의 제내 작용 기전에 수반되는 여러 부작용을 해소하기 위해 각국에서 새로운 작용기작을 가진 콜레스테롤저하제 개발이 시도되고 있음.
· 국내에서도 식이요법과 사용법 고지혈증 개선용 기능성 식품개발에 주력하고 있음.
· 본 연구진은 예비실험결과를 통해 초래된 고지혈증 개선효과를 가진 간글리세린 유출물과 그 구성 flavonoid의 효능을 고지혈증 유발 동물모델에서 확인한 바 있음. |

III. 연구개발의 내용 및 범위

<table>
<thead>
<tr>
<th>연구 내용</th>
<th>연구 범위</th>
</tr>
</thead>
</table>
| 동물모델을 이용한 bioflavonoid 대사산물, bioflavonoid합성유도체 및 시제품용 혼합 조성물의 in vivo 효능 평가 및 작용기작 확립 | ① 동물사육실험 실시
② 혈액화학분석: 혈중 total cholesterol, HDL, triglyceride, GOT, GPT
③ 조직기질 함량분석: total cholesterol, triglyceride
④ 간조직중의 지질대사 및 항산화대사 효소활성측정: ACAT, HMG-CoA reductase, SOD, catalase, GSH-Px
⑤ 혈장 및 간조직 중의 TBARS 수준 정량 |
IV. 연구개발결과

<table>
<thead>
<tr>
<th>년도</th>
<th>연구개발결과</th>
</tr>
</thead>
</table>
| 2000 | ① 혈장 총 콜레스테롤 농도를 지나는 간조직의 콜레스테롤 생합성 조절효소인 HMG-CoA reductase의 활성 저하와 관련이 있는 것으로 평가됨.
② 탱본의 flavonoid 대사산물들은 혈장 콜레스테롤과 증상지질 수준을 동시에 저하시키는 것으로 나타나 혈장기저 강화 효소가 우수한 것으로 평가됨.
③ 대사산물 중 특히 p-hydrobenzoic acid, hesperitin 및 3-methoxy -4-hydroxy cinnamate는 고지혈증 예방효과와 혈액경화 예방 기능을 동시에 지닌 것으로 사료됨.
④ 간조직의 항산화 효소의 활성도 분석 결과로부터 이들 대사산물의 항산화성이 인지되었음. |
| 2001 | ① 혈장 총 콜레스테롤 농도를 지나는 간조직의 HMG-CoA reductase 활성저하와 상호 연관이 있으며, 부분적으로는 ACAT 활성도 저하현상과 연관된 것으로 평가되었음.
② Bioflavonoids 함성 유도체인 2014와 2014는 혈장 콜레스테롤과 증상지질 수준을 동시에 저하시키는 것으로 나타나 혈장기저 강화 효소가 우수한 것으로 평가됨.
③ 함성유도체 화합물 2024와 2018의 투여효과로 활동력과 기능을 지닌 HDL-cholesterol 농도는 상승되고, 항혈액경화 지표인 atherogenic index는 감소하였으므로 이들 화합물의 혈액경화 예방 기능이 입증된 것으로 평가됨.
④ 간조직의 항산화 효소중 catalase는 이들 함성유도체에 의해 활성화되며, 그 결과로 간의 지질과산화물 생성감소에 영향을 미치는 것으로 사료됨. |
| 2002 | ① 1차년도의 2차년도에서 선별된 유용물질을 이용한 시제품 조성품 (Ferulic acid + PHBA, Ferulic acid + 2024, 2024 + 2018, 2024 + PHBA)을 관여한 결과 혈장 총 콜레스테롤 농도를 지나는 간조직의 콜레스테롤 생합성 조절효소인 HMG-CoA reductase와 ACAT 활성도 저하와 관련을 확인하였음.
② 기능성 혼합 조성물을 혈장과 간조직의 콜레스테롤과 증상지질 수준을 동시에 저하시키는 역할과 혈관기저 강화 효소가 상승되는 것으로 평가되었음.
③ 기능성 혼합 조성물의 보충은 혈장과 간조직의 과산화능 수준을 유리적으로 역제하는 것으로 평가되었음. |

V. 연구개발결과의 활용계획

▶ 향후 한국인의 고지혈증 예방 및 치료재 개발의 기초자료로 유용하게 활용가능함
▶ 심혈관계 질환 예방용 기능성 식이보충품 및 건강보조식품의 산업화에 활용.
SUMMARY

I. Title of Research:

Efficacy of bioactive substances for prevention and treatment of cardiovascular disease from derivatives or metabolic products of citrus flavonoids

II. Purpose and backgrounds of research

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Background</th>
</tr>
</thead>
</table>
| To investigate mechanism of lipid-lowering actions of citrus bioflavonoid & its metabolites and synthetic derivatives | • Flavonoids have exhibited a variety of biological and pharmacological activities as proved by many laboratories.
• A number of epidemiological studies have implied a role for flavonoid in reducing the risk of coronary heart disease.
• Our lab. previously reported the cholesterol-lowering activity of certain flavonoids.
• It is still unclear whether all flavonoids derivatives share these properties. |

III. Research Contents

<table>
<thead>
<tr>
<th>Objective</th>
<th>Methods used</th>
</tr>
</thead>
</table>
| To establish in vivo efficacy and elucidation of mechanisms of the synthetic derivatives or metabolic products of citrus flavonoids for prevention and treatment of cardiovascular disease using animal models | ① To carry out animal feeding study
② To analyze blood samples: total- and HDL-cholesterol, triglyceride, GOT, GPT
③ To analyze tissue lipids: total cholesterol, triglyceride
④ To measure enzyme activities related to lipid and antioxidant metabolism: ACAT, HMG-CoA reductase, SOD, catalase, GSH-Px
⑤ To measure TBARS levels in plasma and tissue |

IV. Results

<table>
<thead>
<tr>
<th>Year</th>
<th>Results</th>
</tr>
</thead>
</table>
| 2000 | ① Plasma cholesterol-lowering action was induced by the inhibition of HMG-CoA reductase that regulates cholesterol biosynthesis.
② Most of flavonoid metabolites lowered the concentration of plasma cholesterol and triglyceride simultaneously.
③ Among flavonoid metabolites tested, p-hydrobenzoic acid, hesperitin and 3-methoxy-4-hydroxy cinnamate seemed to express preventive effect on hyperlipidemia as well as that of atherosclerosis.
④ These compounds exhibited antioxidant activity in hepatic tissues. |
<table>
<thead>
<tr>
<th>Year</th>
<th>Results</th>
</tr>
</thead>
</table>
| 2001 | ① It was suggested that lowering of plasma cholesterol concentration by compounds tested, 2024 and 2018, was resulted from inhibition of hepatic HMG-CoA reductase and partly from lower ACAT activity.
② Synthetic bioflavonoid derivatives, 2018 and 2014, lowered plasma cholesterol and triglyceride simultaneously. Thus, they seemed to be very effective in lowering plasma lipids.
③ Supplementation of 2024 and 2018 induced to increase in HDL-cholesterol concentration whereas they decreased atherogenic index. This suggests that 2024 and 2018 are antiatherogenic.
④ Supplementation of 2024 and 2018 resulted in increase of catalase activity among hepatic antioxidant enzymes that might lead to reduce the hepatic lipid peroxides formation. |
| 2002 | ① Functional compounds selected from the 1st and 2nd year were mixed to test the effectiveness of plasma lipid-lowering. The mixed formulation tested were ferulic acid + PHBA, Ferulic acid + 2024, 2024 + 2018, and 2024 + PHBA. The mixed functional compounds are effective for plasma cholesterol-lowering, inhibition of HMG-CoA reductase, and ACAT.
② The mixed functional compounds lowered cholesterol and triglyceride levels in plasma as well as in liver.
③ Plasma and hepatic lipid peroxidation levels were reduced by supplementation of these mixed compounds. |

V. Utilization of Results

► To use as basic research data for prevention and treatment of hyperlipidemia in Korean in future
► To use as an industrial tool for development of functional foods for prevention of cardiovascular diseases
CONTENTS

Chapter 1. Summary of Research ... 101

Chapter 2. Technological status regarding the ongoing-research and development in Korea and Foreign countries ... 103

Chapter 3. Contents of research and its results ... 105

Chapter 4. Research achievement and/or its contribution to related field 139

Chapter 5. Plans for utilization of research results .. 140

Chapter 6. Information of international scientific technologies obtained during performing this research project ... 141

Chapter 7. References ... 142
여백
목 차

제 1 장 연구개발과제의 개요 .. 101
제 2 장 국내외 기술개발 현황 .. 103
제 3 장 연구개발수행 내용 및 결과 ... 105
제 4 장 목표달성도 및 관련분야에의 기여도 .. 1398
제 5 장 연구개발결과의 활용 계획 ... 140
제 6 장 연구개발과정에서 수입한 해외과학기술정보 141
제 7 장 참고문헌 ... 142
여백
제 1 장 연구개발과제의 개요

제 1 절 연구개발의 배경 및 필요성

최근 급격하게 발전한 생명과학과의 산업화로 인간수명이 연장됨에 따라 중·고령자의 건강관리가 사회문제로 되고있다. 45세이상 고령층에 많은 심혈관질환의 주요 발병원인으로는 고혈압, 비만증, 고지혈증, 당뇨병이 지각되고 있으며, 미국에서는 보다라도 연간 90만명이 발병하여 그 중 15만명이 사망하는 것으로 알려져 있다(Stroke 1995). 이중 심장순환기 질환은 전체 사망율의 30%를 차지하고 있으며, 이로는 한국도 그 추세를 따라가는 것으로 보고있다.

본대 인류는 질병의 예방, 치료분야에 수천년 전부터 식물 및 동물자원 등 농산자원을 유용하게 이용해 왔으나, 현대문명의 발달과 더불어 대부분이 서양의 계약회사에 의해 화학물질 이용으로 대체되었다. 그러나 이러한 화학합성제의 부작용이 문제시되면서 질병의 치료 및 예방방면에서 건강식품 성분이나 기능성 식품영양에 관심을 끌고 있다. 더욱이 최근 각국에서 신선식품과 함께 사용될 지식기기능을 가진 생리활성 물질을 탐색하거나 합성하는데 주력하고 있으며, 그 중 bioflavonoids의 생물학적 활성, 약리적 효과 및 의약학적 이용에 대한 연구가 활발히 진행되고 있다. 또한 국내산 천연자원을 이용한 기능성 식품의 판매 또는 약제개발이 확대되고 있는 경향을 놓고 본 연구를 통해 고지혈증 개선을 위한 기능성 제품개발이 성공적으로 수행되며, 향후 한국의 고지혈증 예방 및 치료에 유용하게 사용될 것으로 기대된다. 또한 이를 기반으로 우리 기능성 식품산업을 국가 경쟁력 있는 산업으로 발전시키는데 공헌할 것으로 전망된다.

Bioflavonoid류는 다양한 생리기능을 가지는 물질로 생체에서 항균제, 항암제, 항산화제 등의 기능을 나타내며, 항산화제 기능으로는 oxygen free radical scavenging 작용에 관여한다(Chen et al., 1990, Fraga et al., 1987, Limasset et al., 1993). 또한 심혈관질환에 대한 예방물질의 국내 신약개발에 상당한 수입대체효과 뿐만 아니라, 기능성 식품 및 건강보조식품으로서의 개발가능성도 제시할 수 있을 것으로 사료되며, 이러한 활성성분의 산업화는 보다 용이하게 전개될 수 있을 것으로 전망된다.

최근 혈액형의 저하 물질 등의 체내 작용기전에 수반되는 여러 부작용을 해소하기 위해 각국에서 새로운 작용기전의 기진 cholesterol lowering agent의 개발이 시도되고 있다. 이와 관련하여, 민간요법으로 사용되는 천연물(식물)로부터 추출한 화합물에 대해 고지혈증 개선효과를 검색하여, 이를 건강료기술 기능성식품 또는 치료제로 개발할 경우 그 부작용이나 위험도를 줄일 수 있으리라 사료된다. 이를 위해 본 연구진은 예비실험결과를 통해 천연물 중 고지혈증 개선효과를 가진 감귤류 추출물과 그 구성 flavonoid의 효능을 고지혈증 환자(Bok et al. 1999, 생명과학연구소 연구보고서, 1999)와 토착에서 확인한 바 있다. 본 연구에서는 citrus bioflavonoid와 이들의 체내 대사산물, 및 그 유도체의 작용기전을 실험동물을 대상으로 종합적으로 규명하고 이 물질들을 이용한 기능성 식품제조 및 개발을 확립하고자 한다.
제 2 절 연구개발의 과학기술, 사회경제적 중요성

1. 기술적 측면

가. 국민소득의 향상, 건강증진 식품에 대한 관심의 증가 및 식품판 변화 등으로 식품 소비 구조는 건강지향성과 편의성 위주로 전환되어 가고 있어 기능성 식품소재를 이용한 질병 예방 및 질병 완화를 위한 기능성 식품과 건강보조식품의 개발은 국민건강 증진과 식품산업의 활성화를 위해 필요함.

나. 최근 식생활의 서구화에 따라 우리 국민의 질병발생 양상도 전전군형으로 바뀌어 가고 있어 심혈관질환의 발병율이 크게 증가되고 있으므로 식생활을 통해 이를 예방 및 치료 할 수 있는 방법이 요구됨. 따라서 과학적으로 생리활성이 입증된 기능성 소재는 대사질환 예방과 치료에 큰 효과를 나타낼 것으로 기대됨.

2. 경제·산업적 측면

가. 고소득 시대에 접어들면서 국민의 건강과 장수에 대한 관심이 고조되고 이에 부응하여 과학적으로 그 기능이 규명된 기능성 식품에 대한 개발이 증가되고 있어 향후 그 수요는 더욱 증가할 것으로 예상됨. 현재 국내의 경우 기능성 식품과 연관된 건강 보조 식품은 120 개사에서 800 여종 이상 생산되고 있는 것으로 나타나 있으며, 약 1 천억원의 시장 규모를 형성하고 있는데 시장규모는 연간 약 200%씩 성장하고 있는 추세임. 따라서 앞으로는 건강지향 및 기능성을 추구한 다양한 제품들이 절정의 예방, 치료분야에 적극 이용 될 것으로 예상되어 업계 대규모의 기능성 시장을 형성할 것으로 전망함.

나. 심혈관질환의 대사를 개선할 수 있는 기능성 소재 개발을 통해 국내 식품산업을 활성화시키고 기능성 소재를 외국에 수출함으로써 외화 획득을 가져올 수 있음.

3. 사회·문화적 측면

가. 현대 식생활문화는 국민소득향상, 학가축화 및 여성의 사회참여 증가함에 따라 식품 소비구조가 다양화, 고급화 및 편의화되는 방향으로 바뀌어 가고 있으며 이러한 변화는 기능성식품가공 산업의 발달과 함께 가속화될 전망임.

나. 건강인은 물론 심혈관질환자들이 일상식품으로서 사용할 수 있는 생리활성을 함상시키는 기능성 소재를 개발하여 질환의 치료와 예방을 도모함으로써 국민건강과 보건증진에 기여할 수 있음.

다. 국민생활수준의 향상에 따른 식생활의 다양화, 고급화에 부응할 수 있는 다양한 기능성 소재 개발이 요구됨.
제 2 장 국내외 기술개발 현황

파라과일란 및 작용기전이 알려진 보건용 특성을 대상으로 개발받고 있는 각종 성분들이 분석되고 그 효능과 작용기전들이 연구되고 있으며, 그 결과 성인병과 천연물 또는 식품 성분과의 관계가 규명되고 있다. 또한 이들 이용한 각종 “약 같은 기능성 식품”의 개발이 활발히 추진되고 있다. 약제와는 구별되어 뉴트라슘스(nutraceutics)나 파마푸드(pharmafood), 보조식품(food supplement)등 여러 가지 이름으로 불리고 있는 기능성식품(functional food)은 사람의 질병치료나 건강에 보조 역할 또는 도움을 주는 식품이나 음료를 촉진하는 의미로 사용되고 있다. 이러한 기능성식품 분야와의 연구가 가장 활발한 국가는 일본이며, 최근 우리나라와 유럽도 상당수의 기능성식품 특성이 보유하고 있는 것으로 보고되었다.

현재 국내외에서 시장되고 있는 소위 기능성식품은 균형의 균형과 균형의 균형이 미약한 전문가이다. 최근 기능성식품개발연구원이 조사한 우리나라, 일본의 신진국 기능성식품 관련 기술을 비교하면 우리나라의 기술수준은 대체적으로 전진구의 20-60% 수준인 것으로 평가된 바 있다. 따라서 기능성식품의 정부차원의 관리체계가 갖추어져야하며, 이를 위해 우선적으로 생리활성을 나타내는 성분의 분리, 분석과 더불어 기능성 소재의 유효성과 작용기전 등에 대한 연구가 요구된다.

각국에서는 고콜레스테롤혈증을 예방 및 치료하는 목적뿐만 아니라 약제가 인체에 미치는 여러 부작용을 해소하기 위해 식품 또는 천연물로부터 새로운 작용기전을 가진 다양한 신물질 추출과 기능성 물질의 품질이 수행되어 왔다. 그중 파일의 플라보노이드 성분은 체내에서 강력한 항산화체 역할을 하며 심혈관질환뿐만 아니라 폐질환을 예방하는 역할을 하며, “오메가-3 지방산”은 문헌상의 실험과 순환계 유해에 도움을 주는 것으로 보고되었다. 뿐만 아니라, 기능성 식품에 대한 시장경쟁에서 세계적으로 식품을 일으키고 있는 식품 치료제 “벤네릴(Ben ecol)”은 최근 한국시장 진출을 도모하여 한국,필란드 합작회사인 ‘라이지오 케이알 코리아’를 창설하였다. 벤네릴은 소나무 특성에서 추출한 자연섯대 stanol을 플레스테롤 저하 기능을 나타내는 이스테르화 형태로 전환시킨 물질로 임상실험을 통해 2주간에 LDL cholesterol을 14%, 혈장 총콜레스테롤을 10% 가량 감량시키는 효과가 있는 것으로 보고되었다. 미국 식품의약품안전청(FDA)으로부터 심혈관계질환 예방효능을 지닌 식품첨가제로 공식 인정을 받은 벤네릴은 기능성 건강성과 효유로, 요구르트 등 다이어트식품, 마가린과 치즈 등 유제품, 초코렛 및 과자, 유유 및 물리와 같은 식품에 콜레스테롤 저하제로 널리 첨가될 수 있다. 기능성 식물성성층을 이용한 또 다른 제품으로 캐나다의 Forbes Medi-Tech사가 개발한 Reducol™을 들 수 있는데, 미국의 Altus Food사는 Reducol을 사용하여 Take Heart라는 신상품을 출시하였으며, 이 상품은 아침식사 시리얼, snack bars, 과일주스 등 다양한 종류로 구성되어있다.

국내에서는 연간 1000억원대를 웃도는 플레스테롤 저하물질 시장이 잠기위한 업체들의 경쟁이 치열하다. 현재 플레스테롤을 낮추는 신물질을 개발 했거나 제품개발을 목표로 연구를 추진중인 바이오기업은 모두 10여개에 이르고 있다. (주)에스엔피코리아는 최근 말레와 백당계 등을 8종의 생약을 추출분으로 한 플레스테롤 저하 조성물질을 개발, 국내는 물론 미국과 유럽등지에 특
하늘 출원했다. 한편, 한국식품개발연구원 실험실 벤처 기업인 (주)구푸(goofoo)도 오가과와 구기 자 등 10여개 천연생약제에서 추출한 식물질 '콜스토름'을 이용하여 콜레스테롤 저하약물 '콜200'을 출시한 바 있다. 이들 연구진은 콜스토름에 대한 동물실험결과 복용4주 후 LDL 콜레스테롤이 16% 낮아진 반면 HDL 콜레스테롤은 22% 상승되었다고 밝혔다. 또한 바이오맥스는 감귤껍질에서 추 출한 콜레스테롤 저하물질 JBB-1을 ‘리드레’이라와 상품명으로 판매하고 있으며, 보다 효능이 개선 된 신제품인 ‘원플’을 출시하였고, 의약품개발을 목표로 한 NG-5006이라는 식물질의 임상시험 중에 있다. 식물성 스테롤은 콜레스테롤의 흡수를 경쟁적으로 억제하여 스테롤 데번을 통해 인 체밖에 배출되는데, 국내에서도 콩과 욱수수를 원료로한 이러한 기능성을 가진 콜레스테롤 흡수방지 약물 “콜레로”가 유전사이언스에 의해 출시되었다. 그 외 바이오벤처기업인 케이비하온 콜레스테롤 저하물질로 명명한 ‘플리민’이라는 물질을 출시하였다.

최근 국내에서도 감귤류 및 유자과씨네 bioflavonoid의 생리기능에 대한 연구가 활발히 진행되 고 있는데, 그 중 hesperidine와 naringin은 혈중 중성지질 저하, LDL-콜레스테롤 저하 및 HDL-콜 레스테롤 증가를 보였다. 이들 citrus bioflavonoids들은 혈액학적 저감지혈효과를 나타내는 것으로 보고되었으며, 이들 식품재는 천연 prodrug로서 동맥경화 예방에 사용가능한 화합물임이 압리학 적 특성에 의해 제시되고 있다.
제 3 장 연구개발성행 내용 및 결과

제 1 절 연구개발성행 내용 및 방법

1. 연구내용

경북대학교 식품영양과와 의약연구직과의 위탁연구 책임자와 유관공학과의 박용복 교수가 1차 및 2차년도에 협력체제를 구축하여 citrus bioflavonoid 대사산출 및 그 유도체의 동물실험 실험을 실시하며, 야울로 생체 시료를 분석함으로서 그 효능을 평가하였다. 3차 년도에 1차 및 2차년도에 걸쳐 그 기능성이 확인된 시험물질을 대상으로 하여 시험물 조성 및 비율을 구성하고 연구책임자는 시험물 조성물의 생리활성시험을 수행하였다.

2. 연구방법

가. Citrus bioflavonoid 대사산출 및 그 유도체의 동물실험, 효능평가, 작용기작 규명

(1) 동물사육 및 시료수집

Bio Genomic Inc(서울)로부터 수컷 환쥐(Sprague–Dawley)를 제공받아 1주간 Lab. chow pellet 식이로 적응시키고 후 대조군과 시험군으로 나눈다. 대조군은 0.1% high cholesterol diet를 급여하고 실험군은 0.02% 수분의 HMG-CoA reductase 저해제(Lovastatin)와 시험물질을 보충한 실험식이를 급여하였다. 시험물질로는 총포절환자에게 성영 공학연구소 경대숙 박사 실험실로부터 제공된 citrus bioflavonoid 대사산출 및 유도체를 사용한다. 실험물질들은 각각 high cholesterol diet에 혼합하여 6주간 급여하였다. 동물들은 향온(20℃)과 환습(50%) 그리고 7:00 시부터 19:00 시까지의 light cycle을 유지하는 동물실험실에 설치된 개개의 stainless cage 안에서 사육하며 모든 식이와 식수들은 자유식(ad libitum)으로 먹게 하였다. 사육기간의 마지막 3일 동안은 분변을 수집하여 검조시킨다. 세증은 5일마다 측정하고 식이섭취량은 사육기간 중 매일 측정하여 기록하였다. 동물들은 15시간 점식 후 Ketamine–HCl(유한양행) 마취제를 근육주사(75 mg/kg 세증)하여 복부 하대경맥으로부터 혈액을 채취하며 정기조직들을 수집하였다. 혈장은 혈청지질 분석과 과산화지침 측정용으로 사용되고, 분변은 sterol 분석, 그리고 간조직은 형태학적 분석, 조직지질 및 간 조직 효소 (HMG-CoA reductase 및 ACAT)의 활성도 측정에 사용하였다.
Experimental Animals
(♂, Sprague-Dawley rats)

1 wk
적응기간

Control group

Citrus bioflavonoid
대사유산, 유도체들, 또는 혼합조성물*

Lovastatin group

6 wks
Sacrificing animals

Measurements of various atherogenic indices & determination of plasma and tissue lipid concentrations, hepatic enzyme activities, antioxidant enzyme activities and fecal sterols

Fig. 1. Experimental design of the animal study. *Citrus bioflavonoid metabolites & various derivatives are provided from Korea Research institute of Bioscience and Biotechnology.

(2) 혈장지질농도 측정과 lipoprotein profile 분석

혈장 중 ester형의 cholesterol을 cholesterol esterase에 의해 지방산과 유리형 cholesterol로 전환시킨다(Allain et al., 1974). 이렇게 전환된 cholesterol과 혈장 중의 유리형 cholesterol을 cholesterol oxidase에 의해 Δ4-cholestenon으로 바꾸어 peroxidase와 기질인 H₂O₂, phenol과 4-amino-antipyrine를 섞어서 적색으로 발색시켜 492nm에서 흡광도를 측정하여 cholesterol 표준과 비교하여 경량한다. 이 방법의 상품화된 형태인 Sigma사의 총콜레스테롤 측정 kit를 사용하였다.

HDL-Cholesterol농도 측정을 위해 혈장 100μl를 취하여 인터스텐 나트륨 500μg과 염화마그네슘 1mg을 처리하면, 인터스텐산과 마그네슘 양이온의 작용으로 lipoprotein 중 apo-lipoprotein B를 지닌 low density lipoprotein (LDL) 및 very low density lipoprotein (VLDL)을 첨전시켰다. 이를 원심분리후 위와같은 방법으로 발색반응시켜 492에서 흡광도를 조사하여 cholesterol 표준액과 비교하여 경량하였다. 이 방법을 이용하여 상품화된 형태인 Sigma사의 HDL-첨전시약 kit을 사용하였다.

혈장 증성지질은 lipoprotein lipase(LPL)를 이용하여 글리세린과 지방산으로 분해시킨후 ATP와 Glycerol kinase(GK)를 첨가하여 L-α-phosphoglycerol로 변형시킨다. 여기에 Glycerophosphate oxidase(GPO)를 첨가하여 반응시키면, H₂O₂가 발생한다. 이를 peroxidase를
처리하여 적색 발색시킨후 550에서 흡광도를 조사하여 글리세롤 표준과 비교하여 정량하는 데(Busolo & David, 1973) 상업화된 형태인 Sigma사의 충성지점 정량 kit를 사용하였다.

혈장 lipoprotein profile은 초기소름심장에 의해 얻어진 whole lipoprotein 분획을 HPLC 에 의해 VLDL, LDL 및 HDL로 분리하여 얻어진 chromatogram으로 식이지방간 비교분석하였다.

(3) 간장조직의 콜레스테롤과 충성지점 정량
조직 지 젠은 Folch 등(1957)의 방법에 의해 추출하여 cholesterol와 triglyceride 함량을 혈
장에서와 같은 방법으로 정량하였다. 단 조직지점 정량에서는 Sale 등(1953)에 의해 수정된
것과 같이 호소시액에 유효계로서 0.5% Triton X-100과 3 mM sodium cholate를 혼합하여
발색시 일어나는 백도(turbidity)를 제거하였다. 따라서 장기조직의 cholesterol과 triglyceride
수준을 분광광도계에 의해 정량하게 측정하였다.

(4) HMG-CoA (3-hydroxy-3-methylglutaryl CoA) reductase 활성 측정
Shapiro 등(1974)이 실시한 방법을 수정 보완하여 실시하였다. 본 실험을 실시하기 전에
효소원의 양, 기질의 양, cofactor의 양, 그리고 반응 시간에 따른 활성도의 변화를 분석하였
다. 이 분석에서 HMG-CoA reductase의 활성은 microumoer과 NADPH를 같이 반응시킬 때
전반응(preincubation) 시간과 본 반응(incubation)시간 그리고, microsome 단백질의 농도에
의존성(dependence)이 매우 강하여 NADPH를 포함한 반응은 전반응 시키지 않았을 때 활
성도가 높으며, 반응 시간은 폴로수족 활성도에 미치는 영향이 적어서 5-15분으로 실시하였
다. Microsome 단백질은 1 mg 이하에서, 특히 300 μg이하에서, 그리고, cofactor의 양은 1-2
mM의 농도에서 활성도에 미치는 영향이 적다는 타 보고(Ness et al., 1967)와 일치하게 하였.
Microsome 100 μg~300 μg을 NADPH 50 n mole 그리고 [14C] HMG-CoA 50 n mole
(1,200 cpm or 2,400 cpm/nmole specific activity)과 혼합하여 전체 반응 양을 60 μl로 하여
37℃ 항온 수조에서 15분간 반응후 1/5 volume (10 μl) 6N HCl를 혼합하여 30분간 37℃ 항
온 수조에서 반응시킨다. 이렇게 mevalonate을 lactone form으로 만든 후 Silica Gel 60F254
TLC plate에 정착하여 전개시킨 후 mevalonate standard (lactone form)와 비교하여 Rf 값이
0.2 부근의 band를 잘라 Scintillation counting 한다. 활성도는 1분 반응당 microsome 단백질
이 1 mg 생성하는 mevalonate의 양을 pmole로 나타내었다 (pmoles mevalonate formed/min
incubation time/mg microsolam proteins).

(5) ACAT(acyl-coenzyme A : cholesterol acyltransferase) 활성 측정
ACAT assay에 사용될 cholesterol 용액은 Triton WR-1339에 녹여 준비하였다. cholesterol
6 μg를 6 ml acetone에 녹인 후 6 ml의 acetone에 Triton WR-1339 600 mg를 녹인 용액과
잘 섞은 후 N2 gas 펄에 acetone을 모두 취발시킨 다음, 20 ml의 물에 녹여 cholesterol
(300 μg/ml)용액을 준비한다. 기질로 쓸여 되는 Oleoyl-CoA는 200 μg/ml의 농도가 되게
물에 녹여 적당히 나누어 deep freezer에 보관하여 필요시마다 개내어 사용하였다. Triton
WR-1339에 녹인 cholesterol 6 μg (20 μl), 1M K-phosphate (pH 7.4), 0.6mM BSA 5 μl와
50-100 μg microsome를 잘 섞은 후 물로 180 μl가 되게 채운 후 37°C에서 30분간 전반응 시켰다. [14C]Oleoyl-CoA (specific activity; 15,000 cpm/umole) 5.62 nmole를 섞어 전체 volume이 200 μl가 되게 한 후 37°C에서 30분간 반응한 후 500 μl의 Isopropanol:Heptane (4 : 1) 용액, 300 μl의 heptane 그리고 200μl의 0.1M K-phosphate (pH 7.4)를 넣고 잘 섞은 후 실온에서 2시간 반응하고 한다. 상등액은 200 μl를 취하여 Scintillation counting하여 나온 값을 2배(보정 인자)로 곱하여 활성도를 측정한다. 활성도의 계산은 HMG-CoA reductase의 활성도와 비슷하게 1 mg의 microsome 단백질이 1분간 생성량은 Cholesteryl Oleate의 pmole수 (pmoles Cholesteryl Oleate formed/min/mg microsomal protein)로 나타내었다.

(6) 항산화효소 (catalase, SOD, GSH-peroxidase) 활성도의 측정

(가) Preparation of enzyme source

세균 후 간조직을 즉시 적층하여 0.9% 생리식염수로 수회 세척하고 물기를 제거한 후 무게를 측정하였다. 그리고 각 간엽에서 고르게 일정량 (2 g)을 취하여 조직 1 g 당 0.25 M sucrose 용액을 5배 가하여 병합하여에서 glass teflon homogenizer (Glas-col, 099C K44, USA)로 미쇄하였다. 마쇄액은 600 x g에서 10분 간 원심분리하여 상층액을 취하고 10,000 x g에서 20분간 원심분리하여 mitochondria 분획을 얻었다. 그리고 상층액을 다시 105,000 x g에서 1시간동안 ultracentrifuge (Beckman, Optima TLX-120)하여 cytosol 분획과 microsme 분획으로 분리하였다. Mitochondria 분획을 0.25 M sucrose 용액에 현탁시킨 다음 재원심분리시켜 얻은 천천물을 취하여 소량의 0.25 M sucrose 용액에 재현탁시켜 catalase 활성 측정에 사용하고, cytosol 분획은 GSH-peroxidase와 superoxide dismutase 활성도 측정에 사용한다.

(나) Catalase activity

Catalase 활성도는 Abe의 방법(1974)으로 측정한다. 즉 50 mM potassium phosphate buffer (pH 7.0) 2.89 ml에 가려진 30 mM H₂O₂ 100 μl를 넣어 25°C에서 5분간 incubation시킨다. 그 후 시료 10 μl를 가하여 3.0 ml에 되게 하고 이것을 25°C로 온도가 조절된 spectrophotometer(Beckman Model DU-650)을 이용하여 240 nm에서 5분간 흡광도를 측정하였다. H₂O₂의 흡광도 변화와 H₂O₂의 몰흡광계수로 H₂O₂의 농도를 구한 다음 decreased H₂O₂ nmol/ min/mg·protein으로 효소활성을 계산하여 나타내었다.

(다) Superoxide dismutase activity (SOD)

SOD 활성도는 알칼리 상태에서 pyrogallol의 자동산화에 의한 발색을 이용한 Marklund의 방법(1984)으로 측정하였다. 즉, 50 mM Tris HCl buffer (10 mM EDTA 혼유; pH 8.6) 2.8 ml와 15 mM의 pyrogallol 0.1 ml를 혼합하여 5°C에서 5분간 미리 incubation 시간 후 시료 0.1 ml을 가하여 최종 반응액이 3.0 ml이 되도록 하였다. 이 반응액을 25°C에서 10분간 반응 시간 다음 1N HCl 0.1 ml를 가하여 반응을 종료시키고 440 nm에서 흡광도의 변화를 측정하여 효소활성을 산출한다. 효소활성의 unit은 효소액을 넣지 않고 반응시킨 15 mM pyrogallol 용액의 자동산화를 50% 억제하는 단백질의 양으로 정하였다.
(라) GSH-peroxidase activity (GSH-Px)

GSH-Px 활성도는 Paglia와 Valentine의 방법(1967)으로 산화형 glutathion이 glutathion reductase와 NADPH에 의하여 환원될 때 NADPH의 흡광도가 340 nm에서 감소하는 정도를 측정하였다. 즉 0.1 M Tris HCl(pH 7.2) buffer 2.6 ml과 30 mM 산화형 glutathion 0.1 ml을 넣고 6 mM NADPH 용액(0.1 M Tris buffer NADPH, 5 μg/ml) 0.1 ml에 6.25 μM H2O2를 넣은 뒤 25°C에서 5분간 먼저 preincubation시킨 뒤 여기에 0.1 ml의 시료를 혼합하여 25°C에서 5분간 incubation 시킨 뒤 340 nm에서 흡광도변화를 측정하였다. 효소활성의 1단위는 1 분간 1 nmol의 산화형 NADPH를 생성하는 효소의 양을 나타내었다.

(7) Fecal neutral and acidic sterol 측정

분비의 neutral sterol, 즉 coprostanol, coprostanone, cholesterol 배설량은 Czubayko 등 (1992)에 의한 방법에 따라 건조된 병변을 각각십발에 갈아 1g을 취한 후 internal standard로서 1 mg 5α-cholestane를 첨가하였다. 여기에 1N NaOH (in 90% ethanol) 10 ml를 가하여 67°C 수조에서 1시간 동안 mild alkaline hydrolysis를 시킨 후, 실온에서 식힌 다음 물 5 ml를 가하고 7ml cyclohexane으로 3번 추출한다. 추출된 용액은 정소기계에서 건조시킨 후 cyclohexane 600 μl로 용해시켜 GC로 정량하였다. 총 bile acid 정량은 Crowell과 MaCdonald(1980)에 의한 방법을 이용하여 15 psi하에서 10N NaOH에 의해 가수분해된 bile acid분획을 CHCl3:MetOH(2:1)으로 추출, 건조 시킨 후 3α-hydroxysteroid dehydrogenase와 반응시킨 생성물의 양을 분광광도계를 사용하여 340 nm에서 흡광도를 측정하였다.

(8) 혈장 GOT, GPT 활성도 측정 (간 독성 테스트)

혈장에 GOT의 경우 L-아스파라긴산과 α-케토글루타실산을, GPT의 경우 DL-알라닌과 α-케토글루타실산을 넣으면 혈장의 효소에 의해 기질이 피루빈산으로 바뀌며, 이 피루빈산이 2, 4-디니트로 벤질 하드라전과 반응하여 0.4 N NaOH를 처리하면 비색으로 발색반응이 나타나고 이를 A490-A530에서 흡광도를 측정하여 피루빈산 농도의 표준에 비교하여 활성도를 측정한다. 이 방법이 상품화된 시약으로는 Sigma사의 GOT-GPT효소 kit를 사용하였다.
제 2 절 연구개발수행 결과

1. 제 1차년도: Bioflavonoids 대사산물의 고지혈증 예방 및 치료기능 검증

<table>
<thead>
<tr>
<th>연구 내용</th>
<th>연구 결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 식이섭취량, 체중증가량 및 장기 무게에 미치는 영향 (Table 1-1)</td>
<td>① 3,4-dihydroxy phenylpropionic acid 냉어군이 대조군에 비해 유의적인 체중증가를 보였으나, 타 시험물질들이 체중 증가량 및 식이섭취량에 미치는 영향은 없었음.</td>
</tr>
<tr>
<td></td>
<td>② 간과 신장조직의 무게는 식이군간 유의적 차이가 없었음</td>
</tr>
<tr>
<td></td>
<td>③ 심장무게는 naringenin을 제외한 모든 시험물질군이 대조군과 비슷한 경향을 보였음</td>
</tr>
</tbody>
</table>

학장의 지질변수에 미치는 영향 (Table 1-2)	① 학장 콜레스테롤 농도는 시험물질(naringin과 hesperidin 대사산물)중 naringenin과 o-HPPA를 제외한 모든 시험물질 두어군이 대조군에 비해 저하되었음 (특히, hesperitin이 타 대사산물에 비해 그 효과가 특별).
	② 학장 증성지질 농도는 naringenin, p-HPPA, 및 o-HPPA를 제외한 모든시험군에서 감소되었음
	③ 학장 HDL-콜레스테롤 농도는 식이군간 유의적 차이가 없었음
	④ 총 콜레스테롤에 대한 HDL-콜레스테롤의 비는 p-HPPA, p-hydro benzoic acid, hesperitin 냉어군에서 유의적으로 증가하였음
	⑤ 동맥경화위험 지표인 동맥경화지수(AI)로 p-HPPA, p-hydro benzoic acid, hesperitin 및 3-methoxy-4-hydroxy cinnamate 금연시 유의적으로 감소하였음
경로: Bioflavonoid metabolite의 정체적인 혈증지질 강화효과는 p-hydrobenzoic acid, hesperitin > 3-methoxy-4-hydroxy cinnamate > m-hydroxy cinamamate, 3,4-dihydroxy phenylpropionic acid > p-HPPA > naringenin, o-HPPA > lovastatin의 순으로 평가되었음	

| 간조직의 지질수준에 미치는 영향 (Table 1-3) | ① 간의 콜레스테롤 함량은 lovastatin군만이 대조군에 비해 낮았으며 naringenin, p-HPPA, p-hydrobenzoic acid, hesperitin군은 lovastatin군과 유사하거나 대조군보다 낮은 경향을 보였고, o-HPPA, m-hydroxy cinnamate군에서는 조작 콜레스테롤 수준이 대조군보다 높게 나타났음. |
| | ② 증성지질 농도는 표준물질로 사용된 lovastatin과 시험물질 중 p-hydrobenzoic acid의 효능이 가장 우수하였음 |

결론: 시험물질중 p-hydrobenzoic acid만이 간조직의 증성지질 수준을 유의적으로 감소시키는 것으로 평가되었다.
<table>
<thead>
<tr>
<th>연구 내용</th>
<th>연구 결과</th>
</tr>
</thead>
</table>
| 클레스테롤 조절효소 활성에 미치는 영향 (Table 1-4) | ① 간조직 중의 클레스테롤 합성 용적효소인 HMG-CoA reductase 활성은 lovatstatin과 모든 대사산물 급여군이 대조군에 비하여 유의적으로 감소되었다.
 ② 클레스테롤 에스테르화를 촉매하는 효소인 ACAT 활성은 lovatstatin, p-HPPA, p-hydrobenzoic acid 보충에 의한 변화는 없었으나 나머지 대사산물 급여시 대조군에 비하여 유의적으로 감소되었다.
 결론: 전체적으로는 naringin 및 hesperitin 대사산물 보충에 의해 HMG-CoA reductase와 ACAT 활성이 저하되었다. |
| 혈장과 간조직 중의 TBARS 농도에 미치는 영향 (Table 1-5) | ① 모든 시험물질급여군이 대조군에 비하여 혈장과 간조직 중의 지질과산화 생산물(TBARS)의 농도를 유의적으로 감소시켰다. 그중 hesperdin 대사산물들의 저하효능이 우수하였다.
 결론: naringin 및 hesperitin 대사산물 보충은 혈장 및 간 조직에서 지질과산화 생성 억제효과를 나타내었다. |
| 간조직 중의 항산화 효소 활성에 미치는 영향 (Table 1-6) | ① Bioflavonoids 대사산물과 lovastatin 증여시 SOD 활성도는 모두 증가되었음
 ② Catalase 활성도는 lovastatin, p-hydrobenzoic acid, 및 α-HPPA군을 제외한 모든군에서 감소되었음.
 ③ 반면, GSH-Px 활성도는 대조군에 비하여 lovastatin, naringenin, p-HPPA, p-hydrobenzoic acid, 및 3-methoxy -4-hydroxy cinnamate에서 유의적으로 증가되었음.
 결론: 따라서 이들 시험물질의 식이보충이 항산화 방어계에 미치는 일반적인 영향은 SOD와 GSH-Px활성을 증가시키는 동시에 catalase 활성도는 감소시킴. 이러한 catalase와 GSH-Px의 상반된 변화와 간조직의 TBARS 감소결과는 이들 식이군에서 간세포의 catalase의 활성 증가 필요성이 없음을 시사함. |
| 간독성에 미치는 영향 (Table 1-7) | ① 모든 시험물질급여군이 혈장 GOT・GPT 활성 변화에 미치는 영향은 없었음.
 결론: 이들 시험물질의 간독성은 판정되지 않았음. |
<table>
<thead>
<tr>
<th>Group</th>
<th>Food Intake (g/day)</th>
<th>Weight Gains (g/week)</th>
<th>Organ Weights (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Liver</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Heart</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kidney</td>
</tr>
<tr>
<td>Control</td>
<td>25.05NS (±0.47)</td>
<td>57.75a (±1.52)</td>
<td>17.75NS (±0.77)</td>
</tr>
<tr>
<td>Lovastatin</td>
<td>25.07 (±0.39)</td>
<td>55.54a (±1.75)</td>
<td>18.20 (±0.66)</td>
</tr>
<tr>
<td>Naringenin</td>
<td>24.84 (±0.52)</td>
<td>57.54a (±1.70)</td>
<td>18.41 (±0.72)</td>
</tr>
<tr>
<td>p–HPPA</td>
<td>25.07 (±0.46)</td>
<td>56.78a (±1.84)</td>
<td>17.89 (±0.65)</td>
</tr>
<tr>
<td>p–Hydrobenzoic acid</td>
<td>24.82 (±0.69)</td>
<td>57.50a (±2.31)</td>
<td>17.91 (±1.12)</td>
</tr>
<tr>
<td>Hesperitin</td>
<td>25.97 (±0.32)</td>
<td>59.74ab (±3.86)</td>
<td>19.40 (±0.75)</td>
</tr>
<tr>
<td>o–HPPA</td>
<td>26.38 (±0.54)</td>
<td>59.96ab (±1.48)</td>
<td>18.19 (±0.50)</td>
</tr>
<tr>
<td>m–Hydroxy cinnamic acid</td>
<td>25.90 (±0.46)</td>
<td>59.05ab (±0.92)</td>
<td>17.48 (±0.53)</td>
</tr>
<tr>
<td>3,4–Dihydroxy phenylpropionic acid</td>
<td>26.16 (±0.47)</td>
<td>62.77a (±1.36)</td>
<td>18.93 (±0.51)</td>
</tr>
<tr>
<td>3–Methoxy–4– hydroxy cinnamic acid</td>
<td>25.87 (±0.44)</td>
<td>59.59ad (±1.23)</td>
<td>18.93 (±0.51)</td>
</tr>
</tbody>
</table>

*Means±SE (n=10)
NSNot significantly different between groups (p<0.05).
abcMeans not sharing a common superscript are significantly different between groups (p<0.05)
Table 1-2. Effect of supplementation of bioflavonoids metabolites on plasma lipids in high cholesterol-fed rats*

<table>
<thead>
<tr>
<th>Group</th>
<th>Total Cholesterol (mg/dL)</th>
<th>Triglyceride (mg/dL)</th>
<th>HDL-Cholesterol (mg/dL)</th>
<th>HDL-C/Total-C (%)</th>
<th>AI†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>117.18a (±7.90)</td>
<td>85.84ab (±5.26)</td>
<td>24.64ab (±1.57)</td>
<td>21.02a (±2.24)</td>
<td>3.77a (±0.42)</td>
</tr>
<tr>
<td>Lovastatin</td>
<td>116.81a (±10.53)</td>
<td>89.93ab (±9.17)</td>
<td>28.53bdec (±1.35)</td>
<td>24.42bdec (±2.47)</td>
<td>3.09bdec (±0.37)</td>
</tr>
<tr>
<td>Naringenin</td>
<td>112.74ab (±4.21)</td>
<td>73.65cod (±3.54)</td>
<td>31.41b (±2.57)</td>
<td>27.89abcd (±2.56)</td>
<td>2.59abc (±0.32)</td>
</tr>
<tr>
<td>p-HPPA</td>
<td>95.66c (±7.12)</td>
<td>70.90cde (±5.69)</td>
<td>30.54b (±2.76)</td>
<td>31.93cde (±2.67)</td>
<td>2.13bc (±0.31)</td>
</tr>
<tr>
<td>p-Hydrobenzoic acid</td>
<td>94.09bc (±5.50)</td>
<td>69.98cde (±6.52)</td>
<td>31.38b (±2.02)</td>
<td>33.35cd (±2.99)</td>
<td>2.00c (±0.28)</td>
</tr>
<tr>
<td>Hesperitin</td>
<td>87.22c (±2.99)</td>
<td>61.22cde (±4.59)</td>
<td>30.55b (±2.09)</td>
<td>35.03a (±1.95)</td>
<td>1.85c (±0.19)</td>
</tr>
<tr>
<td>o-HPPA</td>
<td>108.26cde (±8.80)</td>
<td>76.22bcd (±4.34)</td>
<td>25.32b (±2.23)</td>
<td>23.39b (±4.81)</td>
<td>3.30bcd (±0.57)</td>
</tr>
<tr>
<td>m-Hydroxy cinnamate</td>
<td>93.02cde (±5.36)</td>
<td>63.64cde (±5.06)</td>
<td>23.63a (±2.24)</td>
<td>25.40bcd (±3.35)</td>
<td>2.94bcd (±0.63)</td>
</tr>
<tr>
<td>3,4-Dihydroxy phenylpropionic acid</td>
<td>94.48cde (±4.69)</td>
<td>57.33cde (±4.14)</td>
<td>24.44b (±1.61)</td>
<td>25.87abcd (±1.84)</td>
<td>2.89bcd (±0.58)</td>
</tr>
<tr>
<td>3-Methoxy-4-hydroxy cinnamate</td>
<td>91.35c (±4.08)</td>
<td>52.99c (±4.83)</td>
<td>27.19b (±3.34)</td>
<td>29.76abcd (±3.23)</td>
<td>2.36bcd (±0.35)</td>
</tr>
</tbody>
</table>

*Means±SE (n=10)
abcde Means not sharing a common superscript are significantly different between groups (p<0.05).
†Atherogenic Index: (Total cholesterol - HDL-cholesterol)/HDL-cholesterol.
<table>
<thead>
<tr>
<th>Group</th>
<th>Cholesterol (mg/g)</th>
<th>Triglyceride (mg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>95.04±5.22<sup>bc</sup></td>
<td>97.11±6.91<sup>ab</sup></td>
</tr>
<tr>
<td>Lovastatin</td>
<td>71.72±3.56<sup>a</sup></td>
<td>63.58±6.33<sup>d</sup></td>
</tr>
<tr>
<td>Naringenin</td>
<td>83.80±6.14<sup>ab</sup></td>
<td>94.01±9.72<sup>abc</sup></td>
</tr>
<tr>
<td><i>p</i>-HPPA</td>
<td>84.88±4.60<sup>ab</sup></td>
<td>91.40±9.07<sup>abcd</sup></td>
</tr>
<tr>
<td><i>p</i>-Hydrobenzoic acid</td>
<td>85.49±5.50<sup>ab</sup></td>
<td>66.76±5.02<sup>cd</sup></td>
</tr>
<tr>
<td>Hesperitin</td>
<td>89.25±6.34<sup>ab</sup></td>
<td>81.90±11.53<sup>abcd</sup></td>
</tr>
<tr>
<td><i>o</i>-HPPA</td>
<td>116.16±6.32<sup>d</sup></td>
<td>102.76±10.59<sup>a</sup></td>
</tr>
<tr>
<td><i>m</i>-Hydroxy cinnamate</td>
<td>137.34±8.08<sup>e</sup></td>
<td>83.57±9.69<sup>abcd</sup></td>
</tr>
<tr>
<td>3,4-Dihydroxy phenylpropionic acid</td>
<td>102.71±4.56<sup>bcd</sup></td>
<td>70.89±5.62<sup>bcd</sup></td>
</tr>
<tr>
<td>3-Methoxy-4-hydroxy cinnamate</td>
<td>106.16±5.57<sup>cd</sup></td>
<td>96.85±10.41<sup>ab</sup></td>
</tr>
</tbody>
</table>

*Means±SE (n=10)
^{a,b,c,d}Means not sharing a common superscript are significantly different between groups (p<0.05).
<table>
<thead>
<tr>
<th>Group</th>
<th>HMG–CoA Reductase (pmol/min/mg protein)</th>
<th>ACAT (pmol/min/mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>55.68±5.01<sup>a</sup></td>
<td>218.95±28.14<sup>a</sup></td>
</tr>
<tr>
<td>Lovastatin</td>
<td>44.56±4.87<sup>b</sup></td>
<td>214.85±7.97<sup>a</sup></td>
</tr>
<tr>
<td>Naringenin</td>
<td>38.50±4.47<sup>bc</sup></td>
<td>149.13±22.45<sup>bc</sup></td>
</tr>
<tr>
<td><sup>p</sup>-HPPA</td>
<td>45.51±3.12<sup>b</sup></td>
<td>181.51±11.95<sup>ab</sup></td>
</tr>
<tr>
<td><sup>p</sup>-Hydrobenzoic acid</td>
<td>37.68±2.95<sup>bc</sup></td>
<td>191.36±5.68<sup>a</sup></td>
</tr>
<tr>
<td>Hesperetin</td>
<td>33.10±1.84<sup>cd</sup></td>
<td>117.57±7.61<sup>c</sup></td>
</tr>
<tr>
<td><sup>σ</sup>-HPPA</td>
<td>30.69±1.27<sup>cd</sup></td>
<td>144.31±5.27<sup>bc</sup></td>
</tr>
<tr>
<td><sup>m</sup>-Hydroxy cinnamate</td>
<td>33.69±3.10<sup>cd</sup></td>
<td>144.77±10.83<sup>bc</sup></td>
</tr>
<tr>
<td>3,4-Dihydroxy phenylpropionic acid</td>
<td>26.96±1.90<sup>d</sup></td>
<td>133.12±12.80<sup>c</sup></td>
</tr>
<tr>
<td>3-Methoxy-4-hydroxy cinnamate</td>
<td>26.09±2.09<sup>d</sup></td>
<td>138.21±9.29<sup>bc</sup></td>
</tr>
</tbody>
</table>

^{a,b,c} Means not sharing a common superscript are significantly different between groups (p<0.05).
Table 1-5. Effect of supplementation of bioflavonoids metabolites on plasma and hepatic TBARS levels in high cholesterol-fed rats.*

<table>
<thead>
<tr>
<th>Group</th>
<th>Plasma TBARS (nmol/mL)</th>
<th>Hepatic TBARS (nmol/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>2.41±0.10a</td>
<td>5.42±0.19a</td>
</tr>
<tr>
<td>Lovastatin</td>
<td>1.86±0.18bc</td>
<td>4.53±0.22b</td>
</tr>
<tr>
<td>Naringenin</td>
<td>2.05±0.16b</td>
<td>3.76±0.28c</td>
</tr>
<tr>
<td>p-HPPA</td>
<td>1.77±0.04ca</td>
<td>3.09±0.09d</td>
</tr>
<tr>
<td>p-Hydrobenzoic acid</td>
<td>1.42±0.10c</td>
<td>3.86±0.20c</td>
</tr>
<tr>
<td>Hesperitin</td>
<td>1.64±0.09cde</td>
<td>3.13±0.08d</td>
</tr>
<tr>
<td>o-HPPA</td>
<td>1.51±0.09ce</td>
<td>2.92±0.09d</td>
</tr>
<tr>
<td>m-Hydroxy cinnamate</td>
<td>1.60±0.08cde</td>
<td>2.78±0.14d</td>
</tr>
<tr>
<td>3,4-Dihydroxy phenylproplionic acid</td>
<td>1.47±0.07cde</td>
<td>2.77±0.45d</td>
</tr>
<tr>
<td>3-Methoxy-4-hydroxy cinnamate</td>
<td>1.60±0.14cde</td>
<td>3.21±0.50d</td>
</tr>
</tbody>
</table>

*Means±SE (n=10)

Means not sharing a common superscript are significantly different between groups (p<0.05).
Table 1–6. Effect of supplementation of bioflavonoid metabolites on hepatic antioxidant enzymes activities in high cholesterol–fed rats

<table>
<thead>
<tr>
<th>Group</th>
<th>SOD (unit/mg protein)</th>
<th>Catalase (nmol/min/mg protein)</th>
<th>GSH–Px (nmol/min/mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1.02±0.15<sup>a</sup></td>
<td>3.78±0.52<sup>abc</sup></td>
<td>9.31±0.97<sup>ab</sup></td>
</tr>
<tr>
<td>Lovastatin</td>
<td>0.97±0.21<sup>a</sup></td>
<td>4.39±0.72<sup>a</sup></td>
<td>16.44±1.19<sup>d</sup></td>
</tr>
<tr>
<td>Naringenin</td>
<td>3.33±0.31<sup>cd</sup></td>
<td>2.34±0.16<sup>cde</sup></td>
<td>15.06±0.68<sup>a</sup></td>
</tr>
<tr>
<td>4′-HPPA</td>
<td>2.58±0.34<sup>bc</sup></td>
<td>1.87±0.12<sup>ab</sup></td>
<td>14.91±0.70<sup>a</sup></td>
</tr>
<tr>
<td>4′-Hydrobenzoic acid</td>
<td>3.66±0.24<sup>d</sup></td>
<td>2.91±0.34<sup>cde</sup></td>
<td>12.27±0.42<sup>c</sup></td>
</tr>
<tr>
<td>Hesperitin</td>
<td>2.20±0.11<sup>b</sup></td>
<td>2.24±0.22<sup>cde</sup></td>
<td>9.48±0.41<sup>ab</sup></td>
</tr>
<tr>
<td>3′-HPPA</td>
<td>3.40±0.18<sup>cd</sup></td>
<td>1.81±0.26<sup>a</sup></td>
<td>7.88±0.22<sup>a</sup></td>
</tr>
<tr>
<td>m′-Hydroxy cinnamate</td>
<td>2.60±0.27<sup>bc</sup></td>
<td>3.16±0.35<sup>bc</sup></td>
<td>9.17±0.34<sup>ab</sup></td>
</tr>
<tr>
<td>3,4-Dihydroxy phenylpropionic acid</td>
<td>2.34±0.17<sup>b</sup></td>
<td>2.13±0.21<sup>cde</sup></td>
<td>10.27±1.09<sup>bc</sup></td>
</tr>
<tr>
<td>3′-Methoxy-4′-hydroxy cinnamate</td>
<td>2.41±0.29<sup>b</sup></td>
<td>1.67±0.25<sup>c</sup></td>
<td>12.09±0.68<sup>c</sup></td>
</tr>
</tbody>
</table>

<sup>*Means±SE (n=10)
^a^b^c^dMeans not sharing a common superscript are significantly different between groups (p<0.05).
Table 1-7. Effect of supplementation of bioflavonoids metabolites on plasma GOT and GPT activities in high cholesterol–fed rats*

<table>
<thead>
<tr>
<th>Group</th>
<th>GOT (Karmen unit/dL)</th>
<th>GPT (Karmen unit/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>67.20±1.29ab</td>
<td>16.88±0.94a</td>
</tr>
<tr>
<td>Lovastatin</td>
<td>69.58±4.24ab</td>
<td>17.67±1.25a</td>
</tr>
<tr>
<td>Naringenin</td>
<td>76.51±4.33b</td>
<td>18.82±0.96ab</td>
</tr>
<tr>
<td>p-HPPA</td>
<td>72.24±4.19ab</td>
<td>16.99±1.69a</td>
</tr>
<tr>
<td>p-Hydrobenzoic acid</td>
<td>77.66±2.48b</td>
<td>17.73±1.21a</td>
</tr>
<tr>
<td>Hesperitin</td>
<td>64.58±2.84a</td>
<td>15.86±0.99a</td>
</tr>
<tr>
<td>o-HPPA</td>
<td>77.24±4.18b</td>
<td>18.84±0.67ab</td>
</tr>
<tr>
<td>m-Hydroxy cinnamic acid</td>
<td>68.90±2.75ab</td>
<td>15.64±0.43a</td>
</tr>
<tr>
<td>3,4-Dihydroxy phenylproionic acid</td>
<td>74.99±2.93ab</td>
<td>15.75±0.81a</td>
</tr>
<tr>
<td>3-Methoxy-4-hydroxy cinnamate</td>
<td>77.69±1.75b</td>
<td>21.25±1.48b</td>
</tr>
</tbody>
</table>

*Means±SE (n=10)

Means not sharing a common superscript are significantly different between groups (p<0.05).
2. 제 2차년도: Bioflavonoids 합성유도체의 고지혈증 예방 및 치료기능 검증

<table>
<thead>
<tr>
<th>연구 내용</th>
<th>연구 결과</th>
</tr>
</thead>
</table>
| - 식이섭취량, 체중증가량 및 장기 무게에 미치는 영향 (Table 2-1) | ① Lovastatin군역군의 심장증가량이 대조군을 제외한 나머지 식이군에 비해 유의적으로 높았음.
② 간과 신장조직의 무게는 식이군간 유의적 차이가 없었음
③ 시험물질(2024, 2018)군이 체중증가량 및 식이섭취량에 미치는 영향은 없었음. |
| - 혈장의 지질변수에 미치는 영향 (Table 2-3) | ① 혈장 콜레스테롤 농도: Probucol군, hesperetin군 및 무시험군(2024군과 2018군)이 Lovastatin군과 대조군에 비해 유의적으로 저하되었음 (Fig. 2-1).
② 혈장 총지질 농도: 혈장 콜레스테롤 수준과 동일한 변화가 관찰되었음 (Fig. 2-2).
③ 혈장 HDL-콜레스테롤 농도: 식이군간 유의적 차이가 없었음
| - 간조직의 지질수준에 미치는 영향 (Table 2-4) | ① 간의 콜레스테롤 함량: lovastatin군과 hesperetin군만이 대조군에 비해 유의적으로 낮았으며, probucol과 시험물질(2024, 2018)군들은 대조군과 차이가 없었음.
② 중성지질 함량: 대조군을 비롯한 6식이군간의 유의적인 차이는 전혀 관찰되지 않았음. |
<p>| 결론: 전체적인 혈중지질 강하효과는 2024 or 2018> probucol > hesperetin >> Lovastatin > control군의 순으로 평가되었음 |
| - 간독성에 미치는 영향 (Table 2-8) | ① GOT활성도는 시험물질(2024, 2018)투여에 의해 감소되었으나, GPT활성도는 2018에 의해 다소 증가되는 것으로 나타났음. |</p>
<table>
<thead>
<tr>
<th>연구 내용</th>
<th>연구 결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>클레스테롤 조절효소 활성에 미치는 영향 (Table 2-5)</td>
<td>클레스테롤 조절효소 활성에 미치는 영향 (Table 2-5)</td>
</tr>
<tr>
<td>① 간조직 중의 클레스테롤 합성 유속효소인 HMG-CoA reductase활성은 표준물질로 사용된 lovastatin과 probucol, 유도제의 모체항암물인 hesperetin 및 시험물질 (2024, 2018)의 보충에 의해 전체적으로 유의적 감소를 보였음 (Fig 2-3).</td>
<td>① 간조직 중의 클레스테롤 합성 유속효소인 HMG-CoA reductase활성은 표준물질로 사용된 lovastatin과 probucol, 유도제의 모체항암물인 hesperetin 및 시험물질 (2024, 2018)의 보충에 의해 전체적으로 유의적 감소를 보였음 (Fig 2-3).</td>
</tr>
<tr>
<td>② 클레스테롤 에스테르화를 촉진하는 효소인 ACAT 활성도는 lovastatin과 시험물질 2024 투여군이 대조군에 비해 낮은 경향을 보였으며, 나머지 식이군 (probucol군, hesperetin군, 시험물질 2018)들은 대조군에 비하여 유의적으로 낮게 나타났음 (Fig. 2-4).</td>
<td>② 클레스테롤 에스테르화를 촉진하는 효소인 ACAT 활성도는 lovastatin과 시험물질 2024 투여군이 대조군에 비해 낮은 경향을 보였으며, 나머지 식이군 (probucol군, hesperetin군, 시험물질 2018)들은 대조군에 비하여 유의적으로 낮게 나타났음 (Fig. 2-4).</td>
</tr>
<tr>
<td>혈청과 간조직 중의 TBARS 농도에 미치는 영향 (Table 2-6)</td>
<td>혈청과 간조직 중의 TBARS 농도에 미치는 영향 (Table 2-6)</td>
</tr>
<tr>
<td>① 혈청의 지질과산화물 생성경도: 5개식이군 (lovastatin, probucol, hesperetin, 2024, 2018)의 TBARS 농도는 모두 대조군에 비해 모두 유의적으로 낮았음.</td>
<td>① 혈청의 지질과산화물 생성경도: 5개식이군 (lovastatin, probucol, hesperetin, 2024, 2018)의 TBARS 농도는 모두 대조군에 비해 모두 유의적으로 낮았음.</td>
</tr>
<tr>
<td>간조직 중의 항산화 효소 활성에 미치는 영향 (Table 2-7)</td>
<td>간조직 중의 항산화 효소 활성에 미치는 영향 (Table 2-7)</td>
</tr>
<tr>
<td>① Hepatic SOD activity: 6식이군간 유의적 차이는 전혀 관찰되지 않았음.</td>
<td>① Hepatic SOD activity: 6식이군간 유의적 차이는 전혀 관찰되지 않았음.</td>
</tr>
<tr>
<td>결론: 따라서 이들 시험물질(2024, 2018)의 식이보충이 항산화 방어체계에 미치는 일반적인 영향은 SOD과 GSH-Px 활성도에 영향을 미치지 않으나, catalase 활성도를 증가 시킨 것으로 평가됨. Hepatic antioxidative enzyme들 중 catalase의 변화양상은 hepatic TBARS수준 변화와 연관됨 것으로 평가됨. 이는 간세포의 과산화물 생성 억제에 대한 catalase의 작용을 시사함.</td>
<td>결론: 따라서 이들 시험물질(2024, 2018)의 식이보충이 항산화 방어체계에 미치는 일반적인 영향은 SOD과 GSH-Px 활성도에 영향을 미치지 않으나, catalase 활성도를 증가 시킨 것으로 평가됨. Hepatic antioxidative enzyme들 중 catalase의 변화양상은 hepatic TBARS수준 변화와 연관됨 것으로 평가됨. 이는 간세포의 과산화물 생성 억제에 대한 catalase의 작용을 시사함.</td>
</tr>
<tr>
<td>Dietary group</td>
<td>Control</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>Casein</td>
<td>20</td>
</tr>
<tr>
<td>Methionine</td>
<td>0.3</td>
</tr>
<tr>
<td>Corn starch</td>
<td>15</td>
</tr>
<tr>
<td>Sucrose</td>
<td>49</td>
</tr>
<tr>
<td>Cellulose</td>
<td>5</td>
</tr>
<tr>
<td>Mineral mixture<sup>1</sup></td>
<td>3.5</td>
</tr>
<tr>
<td>Vitamin mixture<sup>2</sup></td>
<td>1</td>
</tr>
<tr>
<td>Choline bitartate</td>
<td>0.2</td>
</tr>
<tr>
<td>Corn Oil</td>
<td>5</td>
</tr>
<tr>
<td>Cholestrol</td>
<td>1</td>
</tr>
<tr>
<td>Lovastatin</td>
<td>0.02</td>
</tr>
<tr>
<td>Probucol</td>
<td></td>
</tr>
<tr>
<td>Hesperetin</td>
<td>0.02</td>
</tr>
<tr>
<td>2024</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

¹AIN-76 mineral mixture; ²AIN-78 vitamin mixture

Control group: 1% cholesterol diet
Lovastatin group: 1% cholesterol + 0.02% Lovastatin
Probucol group: 1% cholesterol + 0.02% Probucol
Hesperetin group: 1% cholesterol + 0.02% (or 0.0661 mol%) Hesperetin (Mwt: 302.3)
2024 group: 1% cholesterol + 0.032% (or 0.0661 mol%) 2024 (Mwt: 484.58)
2018 group: 1% cholesterol + 0.031% (or 0.0661 mol%) 2018 (Mwt: 470.6)
Table 2–2. Effect of supplementation of synthetic derivatives on food intake weight gains, and organ weights in high cholesterol–fed rats*

<table>
<thead>
<tr>
<th>Group</th>
<th>Weight Gain (g/day)</th>
<th>Food Intake (g/day)</th>
<th>Organ Weights(g)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Liver</td>
<td>Heart</td>
<td>Kidney</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>8.48±0.10 NS</td>
<td>29.03±0.17 NS</td>
<td>4.57±0.11 NS</td>
<td>0.32±0.01 ab</td>
<td>0.76±0.01 NS</td>
<td></td>
</tr>
<tr>
<td>Lovastatin</td>
<td>8.12±0.18</td>
<td>28.95±0.19</td>
<td>4.57±0.23</td>
<td>0.34±0.01 b</td>
<td>0.74±0.02</td>
<td></td>
</tr>
<tr>
<td>Probucol</td>
<td>8.44±0.23</td>
<td>28.94±0.32</td>
<td>4.29±0.11</td>
<td>0.31±0.01 a</td>
<td>0.76±0.02</td>
<td></td>
</tr>
<tr>
<td>Hesperetin</td>
<td>8.32±0.16</td>
<td>29.27±0.21</td>
<td>4.47±0.15</td>
<td>0.30±0.01 a</td>
<td>0.71±0.01</td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td>8.06±0.24</td>
<td>29.12±0.23</td>
<td>4.63±0.13</td>
<td>0.31±0.01 a</td>
<td>0.72±0.02</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>8.26±0.19</td>
<td>29.43±0.19</td>
<td>4.35±0.13</td>
<td>0.31±0.01 a</td>
<td>0.71±0.01</td>
<td></td>
</tr>
</tbody>
</table>

*Means±SE (n=10)
NS: Not significantly different between groups (p<0.05).
ab: Means not sharing a common superscript are significantly different between groups (p<0.05).

Table 2–3. Effect of supplementation of synthetic derivatives on plasma lipids in high cholesterol–fed rats*

<table>
<thead>
<tr>
<th>Group</th>
<th>TC (mg/dL)</th>
<th>TG (mg/dL)</th>
<th>HDL–C (mg/dL)</th>
<th>HDL–C/TC (%)</th>
<th>AI”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>158.00 a</td>
<td>106.98 a</td>
<td>31.69 NS</td>
<td>20.05 a</td>
<td>4.00 a</td>
</tr>
<tr>
<td></td>
<td>(+6.21)</td>
<td>(+6.23)</td>
<td>(+2.05)</td>
<td>(+1.15)</td>
<td>(+0.35)</td>
</tr>
<tr>
<td>Lovastatin</td>
<td>148.99 a</td>
<td>119.42 b</td>
<td>33.15</td>
<td>22.25 b</td>
<td>3.50 b</td>
</tr>
<tr>
<td></td>
<td>(+10.97)</td>
<td>(+10.77)</td>
<td>(+1.61)</td>
<td>(+2.43)</td>
<td>(+0.56)</td>
</tr>
<tr>
<td>Probucol</td>
<td>114.64 b</td>
<td>81.52 b</td>
<td>34.45</td>
<td>30.05 c</td>
<td>2.32 b</td>
</tr>
<tr>
<td></td>
<td>(+6.07)</td>
<td>(+6.03)</td>
<td>(+1.76)</td>
<td>(+3.39)</td>
<td>(+0.35)</td>
</tr>
<tr>
<td>Hesperetin</td>
<td>110.32 b</td>
<td>78.99 b</td>
<td>31.55</td>
<td>28.59 bc</td>
<td>2.50 b</td>
</tr>
<tr>
<td></td>
<td>(+6.86)</td>
<td>(+5.48)</td>
<td>(+1.33)</td>
<td>(+1.93)</td>
<td>(+0.24)</td>
</tr>
<tr>
<td>2024</td>
<td>102.05 b</td>
<td>81.29 b</td>
<td>31.41</td>
<td>30.76 c</td>
<td>2.26 b</td>
</tr>
<tr>
<td></td>
<td>(+7.18)</td>
<td>(+4.58)</td>
<td>(+1.39)</td>
<td>(+2.17)</td>
<td>(+0.20)</td>
</tr>
<tr>
<td>2018</td>
<td>104.35 b</td>
<td>75.91 b</td>
<td>31.38</td>
<td>30.02 c</td>
<td>2.38 b</td>
</tr>
<tr>
<td></td>
<td>(+4.58)</td>
<td>(+4.26)</td>
<td>(+2.11)</td>
<td>(+2.60)</td>
<td>(+0.33)</td>
</tr>
</tbody>
</table>

*Mean±SE
**Not significantly different between groups at p<0.05
ab: Means not sharing a common superscripts are significantly different between groups at p<0.05
Atherogenic index : (Total cholesterol–HDL-cholesterol)/HDL-cholesterol
Fig. 2-1. Effect of supplementation of synthetic derivatives on plasma total-cholesterol in high cholesterol-fed rats. "Mean±SE. a,b Means not sharing a common superscripts are significantly different between groups at p<0.05.

Fig. 2-1. Effect of supplementation of synthetic derivatives on plasma triglyceride in high cholesterol-fed rats. "Mean±SE. a,b Means not sharing a common superscripts are significantly different between groups at p<0.05.
Table 2-4. Effect of synthetic derivatives supplementation on hepatic lipids in high cholesterol-fed rats

<table>
<thead>
<tr>
<th>Group</th>
<th>Total Cholesterol (mg/g)</th>
<th>Triglyceride (mg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>205.75±8.62(^a)</td>
<td>176.73±12.27(^ns)</td>
</tr>
<tr>
<td>Lovastatin</td>
<td>159.66±3.96(^b)</td>
<td>180.98±14.05</td>
</tr>
<tr>
<td>Probucol</td>
<td>176.74±4.35(^ab)</td>
<td>167.93±8.80</td>
</tr>
<tr>
<td>Hesperetin</td>
<td>166.59±11.69(^b)</td>
<td>166.67±13.81</td>
</tr>
<tr>
<td>2024</td>
<td>177.15±8.36(^ab)</td>
<td>168.29±12.45</td>
</tr>
<tr>
<td>2018</td>
<td>184.57±16.93(^ab)</td>
<td>181.30±17.10</td>
</tr>
</tbody>
</table>

\(^a\)Mean±SE
\(^b\)Not significantly different between groups at p<0.05
\(^ab\)Means not sharing a common superscripts are significantly different between groups at p<0.05

Table 2-5. Effect of supplementation synthetic derivatives on hepatic HMG-CoA reductase and ACAT activities in high cholesterol-fed rats

<table>
<thead>
<tr>
<th>Group</th>
<th>HMG-CoA reductase (pmole/min/mg protein)</th>
<th>ACAT (pmole/min/mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>180.99±9.60(^a)</td>
<td>384.41±20.42(^a)</td>
</tr>
<tr>
<td>Lovastatin</td>
<td>149.61±8.56(^b)</td>
<td>350.49±16.22(^ab)</td>
</tr>
<tr>
<td>Probucol</td>
<td>139.87±9.26(^b)</td>
<td>303.89±13.17(^b)</td>
</tr>
<tr>
<td>Hesperetin</td>
<td>148.51±5.42(^a)</td>
<td>327.68±16.58(^b)</td>
</tr>
<tr>
<td>2024</td>
<td>151.05±8.97(^b)</td>
<td>351.10±17.71(^ab)</td>
</tr>
<tr>
<td>2018</td>
<td>142.35±6.12(^b)</td>
<td>295.91±20.18(^b)</td>
</tr>
</tbody>
</table>

\(^a\)Mean±SE
\(^b\)Means not sharing a common superscripts are significantly different between groups at p<0.05
Fig. 2-3. Effect of supplementation of synthetic derivatives on hepatic HMG-CoA reductase activities in high cholesterol-fed rats. *Mean±SE. #Means not sharing a common superscripts are significantly different between groups at p<0.05.

Fig. 2-4. Effect of supplementation of synthetic derivatives on hepatic ACAT activities in high cholesterol-fed rats. *Mean±SE. #Means not sharing a common superscripts are significantly different between groups at p<0.05.
Table 2-6. Effect of supplementation of synthetic derivatives on plasma and hepatic TBARS levels in high cholesterol-fed rats

<table>
<thead>
<tr>
<th>Group</th>
<th>Plasma TBARS (nmole/mg)</th>
<th>Hepatic TBARS (nmole/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>3.31±0.25<sup>a</sup></td>
<td>23.50±0.63<sup>ab</sup></td>
</tr>
<tr>
<td>Lovastatin</td>
<td>2.27±0.16<sup>b</sup></td>
<td>23.58±0.36<sup>ab</sup></td>
</tr>
<tr>
<td>Probucol</td>
<td>2.23±0.12<sup>c</sup></td>
<td>21.89±0.83<sup>a</sup></td>
</tr>
<tr>
<td>Hesperetin</td>
<td>2.29±0.10<sup>b</sup></td>
<td>24.03±0.51<sup>b</sup></td>
</tr>
<tr>
<td>2024</td>
<td>2.13±0.11<sup>b</sup></td>
<td>23.00±0.55<sup>ab</sup></td>
</tr>
<tr>
<td>2018</td>
<td>2.11±0.12<sup>b</sup></td>
<td>22.36±0.90<sup>ab</sup></td>
</tr>
</tbody>
</table>

^{a,b}Mean±SE
^{a,b}Means not sharing a common superscripts are significantly different between groups at p<0.05

Table 2-7. Effect of supplementation of synthetic derivatives on hepatic antioxidant enzymes activities in high cholesterol-fed rats

<table>
<thead>
<tr>
<th>Group</th>
<th>SOD (unit/mg)</th>
<th>Catalase (μmole/mg/min)</th>
<th>GSH–Px (nmole/mg/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>2.06±0.20<sup>ss</sup></td>
<td>15.64±0.19<sup>icc</sup></td>
<td>6.55±0.28<sup>ab</sup></td>
</tr>
<tr>
<td>Lovastatin</td>
<td>2.05±0.13</td>
<td>14.59±0.75<sup>ab</sup></td>
<td>7.10±0.60<sup>ab</sup></td>
</tr>
<tr>
<td>Probucol</td>
<td>2.22±0.09</td>
<td>14.16±0.67<sup>a</sup></td>
<td>7.67±0.54<sup>c</sup></td>
</tr>
<tr>
<td>Hesperetin</td>
<td>2.18±0.11</td>
<td>15.17±1.08<sup>ab</sup></td>
<td>6.35±0.41<sup>ab</sup></td>
</tr>
<tr>
<td>2024</td>
<td>2.48±0.13</td>
<td>17.95±0.74<sup>c</sup></td>
<td>6.13±0.50<sup>a</sup></td>
</tr>
<tr>
<td>2018</td>
<td>2.37±0.16</td>
<td>17.12±0.68<sup>bc</sup></td>
<td>6.51±0.50<sup>ab</sup></td>
</tr>
</tbody>
</table>

^{a,b}Mean±SE
^{ss,cc}Not significantly different between groups at p<0.05
^{a,b}Means not sharing a common superscripts are significantly different between groups at p<0.05
Table 2-8. Effect of supplementation of synthetic derivatives on plasma GOT and GPT activities in high cholesterol-fed rats*

<table>
<thead>
<tr>
<th>Group</th>
<th>GOT (karmen/ml)</th>
<th>GPT (karmen/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>89.57±4.38a</td>
<td>31.37±1.64ab</td>
</tr>
<tr>
<td>Lovastatin</td>
<td>86.79±5.84a</td>
<td>31.03±1.70ab</td>
</tr>
<tr>
<td>Probucol</td>
<td>76.72±6.08ab</td>
<td>29.53±1.62a</td>
</tr>
<tr>
<td>Hesperetin</td>
<td>79.78±3.79ab</td>
<td>36.86±1.86b</td>
</tr>
<tr>
<td>2024</td>
<td>69.31±4.59p</td>
<td>36.73±1.94b</td>
</tr>
<tr>
<td>2018</td>
<td>65.49±3.60p</td>
<td>45.72±2.61c</td>
</tr>
</tbody>
</table>

*Mean±SE

Means not sharing a common superscripts are significantly different between groups at p<0.05
3. 제3차년도: Bioflavonoids 대사산물과 혈상유도체를 이용한 시체중 조성물의
고지혈증 예방 및 치료 기능 검증

<table>
<thead>
<tr>
<th>연구 내용</th>
<th>연구 결과</th>
</tr>
</thead>
</table>
| **식이섭취량, 체중증가량 및 장기 무게에 미치는 영향 (Table 3-2)** | ① 시험물질들이 체중증가량 및 식이 섭취량에 미치는 영향은 없었음.
② 간과 신장조직의 무게는 식이균간 유의적 차이가 없었음
③ Naringenin금어균과 (2024 + PHBA)금어균의 심장중량이 대조군과 다른 실험군에 비해 유의적으로 높았음. |
| **혈장의 지질변수에 미치는 영향 (Table 3-3)** | ① 혈장 클레스테롤 농도: 모든 식이균이 대조군에 비해 유의적으로 저하되었음 (Fig. 3-1).
② 혈장 중성지질 농도: (Ferulic acid + 2024)균을 제외한 모든 시험클레스테롤균이 대조군에 비해 유의적으로 저하되었음 (Fig. 3-2).
③ 혈장 HDL-클레스테롤 농도: 식이균간 유의적 차이가 없음
④ 총 클레스테롤에 대한 HDL-클레스테롤의 비: (2024 + PHBA) 식이균을 제외한 모든 식이균들이 대조군에 비해 유의적으로 증가하였음
⑤ 동맥경화위험 척도인 동맥경화지수(AI): (2024 + PHBA) 식이균을 제외한 나머지 식이균들이 대조군에 비해 유의적으로 저하되었음. |
| 결론: 전체적인 혈중지질 강화효과는 hesperetin, naringenin, (ferulic acid + PHBA), (ferulic acid + 2024) or (2024 + 2018) >> (2024 + PHBA) > control 군의 순으로 평가되었음 |
| **간조직의 지질수준에 미치는 영향 (Table 3-4)** | ① 간의 클레스테롤 함량: 모든 식이균이 대조군에 비해 유의적으로 낮았음 (Fig. 3-3).
② 중성지질 함량: 모든 식이균이 대조군에 비해 유의적으로 낮았음 (Fig. 3-4) |
| 결론: 기능성비합물 공분석에 의한 간조직의 지질함량이 대조군에 비해 유의적으로 감소하였음 |
| **간독성에 미치는 영향 (Table 3-5)** | ① GOT활성도는 (2024 + 2018)금어균을 제외한 나머지 식이균은 대조군에 비해 감소되었고, GPT활성도는 모든 식이균이 대조군에 비해 유의적으로 낮았음. |

- 128 -
<table>
<thead>
<tr>
<th>연구 내용</th>
<th>연구 결과</th>
</tr>
</thead>
</table>
| ■ 콜레스테롤 조절 효소 활성에 미치는 영향 (Table 3-6) | ① 간조직 중의 콜레스테롤 합성 용량 증가인 HMG-CoA \textit{reductase} 활성은 모든 식이근에서 유의적으로 감소를 보였음 (Fig 3-5).
② 콜레스테롤 에스테르화를 촉진하는 효소인 \textit{ACAT} 활성도는 전체적으로 대조군에 비하여 유의적으로 낮게 나타났으며, (2024 + 2018), (2024+ PHBA) 식이근이 현저히 낮게 나타났음 (Fig. 3-6).
결론: HMG-CoA \textit{reductase}, \textit{ACAT} 활성도는 모든 식이근에 의해서 유의적으로 저하되었고, (2024 + 2018), (2024+ PHBA) 식이근의 \textit{ACAT} 활성이 대조군에 비해 현저히 저해되는 것으로 평가되었음. |
| ■ 혈장과 간조직 중의 \textit{TBARS} 농도에 미치는 영향 (Table 3-7) | ① 혈장의 지질과 산화물 생성 정도: 모든 식이근의 \textit{TBARS} 농도가 대조군에 비해 유의적으로 낮았으며 (2024 + 2018) 식이근이 현저히 낮은 경향을 나타냈다.
② 간조직의 지질과 산화물 생성 정도: 모든 식이근의 \textit{TBARS} 수준이 대조군에 비해 유의적으로 낮았음.
결론: 모든 시험물질 보충은 혈장과 간조직 지질과산화 생성 억제 효과를 나타내었다. |
| ■ 간조직 중의 항산화 효소 활성에 미치는 영향 (Table 3-8) | ① Hepatic SOD activity: (2024 + 2018) 식이균만이 유의적으로 높았음
② Hepatic catalase activity: hesperetin, (ferulic acid + 2024), (2024 + 2018) 균은 대조군을 비롯한 나머지 균에 비해 유의적으로 높았음
③ Hepatic GSH–Px activity: (2024 + PHBA) 식이균만이 유의적으로 높았음
결론: 따라서 시험물질의 식이보충이 항산화 방어계에 미치는 일반적인 영향은 SOD와 GSH–Px 활성도에 영향을 미치지 않으나, catalase 활성도를 증가시킨 것으로 평가 됨. |
<table>
<thead>
<tr>
<th>Dietary group</th>
<th>Component</th>
<th>Control</th>
<th>Naringenin</th>
<th>Hesperetin</th>
<th>Ferulic acid</th>
<th>Ferulic acid + PHBA</th>
<th>Ferulic acid + 2024</th>
<th>Ferulic acid + 2018</th>
<th>Ferulic acid + PHBA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Casein</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Methionine</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>Corn starch</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Sucrose</td>
<td>49</td>
<td>48.98</td>
<td>48.98</td>
<td>48.98</td>
<td>48.98</td>
<td>48.97</td>
<td>48.97</td>
<td>48.97</td>
</tr>
<tr>
<td></td>
<td>Cellulose</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mineral mixture1</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>Vitamin mixture2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Choline bitartrate</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Corn Oil</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Cholesterol</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Naringenin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Hesperetin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Ferulic acid + PHBA**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Ferulic acid + 2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>2024 + 2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>2024 + PHBA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

1AIN-76 mineral mixture

2AIN-78 vitamin mixture

Control group: 1% cholesterol diet.

Naringenin group: 1% cholesterol + 0.02% (or 0.0735 mol%) Naringenin (Mwt: 272.3)

Hesperetin group: 1% cholesterol + 0.02% (or 0.0661 mol%) Hesperetin (Mwt: 302.3)

Ferulic acid + PHBA group: 1% cholesterol + 0.02% [Ferulic acid (0.0387 mol%) + PHBA (0.0367 mol%)]

Ferulic acid + 2024 group: 1% cholesterol + 0.02% [Ferulic acid (0.0387 mol%) + 2024 (0.033 mol%)]

2024 + 2018 group: 1% cholesterol + 0.03% [2024 (0.033 mol%) + 2018 (0.033 mol%)]

2024 + PHBA group: 1% cholesterol + 0.03% [2024 (0.033 mol%) + PHBA (0.0367 mol%)]

Ferulic acid: 3-methoxy-4-hydroxy-cinnamate

PHBA: p-hydrobenzoic acid
Table 3–2. Weight gain, food intake, and organ weight in rats fed the control and experimental diets supplement with high-cholesterol, mixtures of functional bioflavonoids

<table>
<thead>
<tr>
<th>Group</th>
<th>Weight Gain (g/day)</th>
<th>Food Intake (g/day)</th>
<th>Organ Weights (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Liver</td>
</tr>
<tr>
<td>Control</td>
<td>5.88±0.08<sup>ns</sup></td>
<td>24.75±0.16<sup>ns</sup></td>
<td>4.65±0.07<sup>ns</sup></td>
</tr>
<tr>
<td>Naringenin</td>
<td>5.85±0.10</td>
<td>25.03±0.10</td>
<td>4.45±0.14</td>
</tr>
<tr>
<td>Hesperetin</td>
<td>6.10±0.12</td>
<td>24.80±0.20</td>
<td>4.36±0.12</td>
</tr>
<tr>
<td>Ferulic acid + PHBA</td>
<td>5.89±0.15</td>
<td>25.08±0.18</td>
<td>4.68±0.12</td>
</tr>
<tr>
<td>Ferulic acid + 2024</td>
<td>6.07±0.10</td>
<td>25.03±0.17</td>
<td>4.61±0.14</td>
</tr>
<tr>
<td>2024 + 2018</td>
<td>5.88±0.10</td>
<td>24.70±0.40</td>
<td>4.54±0.09</td>
</tr>
<tr>
<td>2024 + PHBA</td>
<td>5.85±0.17</td>
<td>24.71±0.24</td>
<td>4.51±0.08</td>
</tr>
</tbody>
</table>

Mean±SE

^{ns}Not significantly different between groups at p<0.05

^{ab}Means not sharing a common superscripts are significantly different between groups at p<0.05
Table 3-3. Effect of mixtures of functional bioflavonoids supplementation on plasma lipids in high cholesterol–fed rats

<table>
<thead>
<tr>
<th>Group</th>
<th>TC (mg/dL)</th>
<th>TG (mg/dL)</th>
<th>HDL–C (mg/dL)</th>
<th>HDL–C/TC (%)</th>
<th>AI(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>140.38(^a) (±14.93)</td>
<td>107.30(^b) (±6.29)</td>
<td>30.26(^ab) (±1.23)</td>
<td>21.55(^b) (±2.39)</td>
<td>3.64(^a) (±0.43)</td>
</tr>
<tr>
<td>Naringenin</td>
<td>107.38(^a) (±5.72)</td>
<td>66.00(^a) (±6.35)</td>
<td>30.96 (±1.82)</td>
<td>28.87(^a) (±1.23)</td>
<td>2.47(^a) (±0.14)</td>
</tr>
<tr>
<td>Hesperetin</td>
<td>99.59(^b) (±5.07)</td>
<td>63.19(^a) (±4.25)</td>
<td>30.88 (±1.05)</td>
<td>31.06(^b) (±1.52)</td>
<td>2.23(^b) (±0.16)</td>
</tr>
<tr>
<td>Ferulic acid + PHBA</td>
<td>102.57(^c) (±6.80)</td>
<td>82.74(^bc) (±7.56)</td>
<td>30.63 (±1.04)</td>
<td>29.86(^b) (±1.88)</td>
<td>2.35(^b) (±0.23)</td>
</tr>
<tr>
<td>Ferulic acid + 2024</td>
<td>101.02(^b) (±6.06)</td>
<td>96.04(^b) (±4.11)</td>
<td>30.37 (±1.33)</td>
<td>30.08(^b) (±1.89)</td>
<td>2.33(^b) (±0.23)</td>
</tr>
<tr>
<td>2024 + 2018</td>
<td>107.18(^b) (±5.36)</td>
<td>84.27(^bc) (±4.07)</td>
<td>30.76 (±1.46)</td>
<td>28.68(^b) (±2.86)</td>
<td>2.49(^b) (±0.33)</td>
</tr>
<tr>
<td>2024 + PHBA</td>
<td>110.06(^b) (±6.44)</td>
<td>78.01(^c) (±5.95)</td>
<td>29.39 (±1.60)</td>
<td>26.69(^b) (±2.89)</td>
<td>2.75(^ab) (±0.38)</td>
</tr>
</tbody>
</table>

Mean±SE

\(^{ab}\)Not significantly different between groups at p<0.05

\(^{abc}\)Means not sharing a common superscripts are significantly different between groups at p<0.05

\(^1\)Atherogenic index : (Total cholesterol–HDL–cholesterol)/HDL–cholesterol
Fig. 3-1. Effect of mixtures of functional bioflavonoids supplementation on plasma total-cholesterol in high cholesterol-fed rats (mg/dL). *Mean±SE. a-bMeans not sharing a common superscripts are significantly different between groups at p<0.05.

Fig. 3-2. Effect of mixtures of functional bioflavonoids supplementation on plasma triglyceride in high cholesterol-fed rats (mg/dL). *Mean±SE. a-bMeans not sharing a common superscripts are significantly different between groups at p<0.05.
Table 3–4. Effect of mixtures of functional bioflavonoids supplementation on hepatic lipids in high cholesterol–fed rats

<table>
<thead>
<tr>
<th>Group</th>
<th>Total Cholesterol (mg/g)</th>
<th>Triglyceride (mg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>195.95±2.00<sup>a</sup></td>
<td>250.53±13.19<sup>a</sup></td>
</tr>
<tr>
<td>Naringenin</td>
<td>169.96±2.56<sup>b</sup></td>
<td>161.81±9.60<sup>c</sup></td>
</tr>
<tr>
<td>Hesperetin</td>
<td>173.39±2.10<sup>b</sup></td>
<td>184.08±9.89<sup>bc</sup></td>
</tr>
<tr>
<td>Ferulic acid + PHBA</td>
<td>172.65±5.23<sup>b</sup></td>
<td>164.05±12.06<sup>b</sup></td>
</tr>
<tr>
<td>Ferulic acid + 2024</td>
<td>165.95±4.27<sup>b</sup></td>
<td>214.27±9.54<sup>bc</sup></td>
</tr>
<tr>
<td>2024 + 2018</td>
<td>174.73±5.06<sup>b</sup></td>
<td>193.08±8.96<sup>bc</sup></td>
</tr>
<tr>
<td>2024 + PHBA</td>
<td>161.08±2.65<sup>b</sup></td>
<td>207.23±10.07<sup>b</sup></td>
</tr>
</tbody>
</table>

Mean±SE
^{abc}Means not sharing a common superscripts are significantly different between groups at p<0.05

Table 3–5. Effect of mixtures of functional bioflavonoids supplementation on plasma GOT and GPT in high cholesterol–fed rats

<table>
<thead>
<tr>
<th>Group</th>
<th>GOT (karmen/ml)</th>
<th>GPT (karmen/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>96.98±4.58<sup>a</sup></td>
<td>49.50±6.58<sup>a</sup></td>
</tr>
<tr>
<td>Naringenin</td>
<td>83.93±3.12<sup>bc</sup></td>
<td>27.28±1.91<sup>b</sup></td>
</tr>
<tr>
<td>Hesperetin</td>
<td>81.89±3.57<sup>bc</sup></td>
<td>33.91±3.11<sup>b</sup></td>
</tr>
<tr>
<td>Ferulic acid + PHBA</td>
<td>75.13±2.75<sup>c</sup></td>
<td>26.43±2.35<sup>b</sup></td>
</tr>
<tr>
<td>Ferulic acid + 2024</td>
<td>80.66±4.15<sup>bc</sup></td>
<td>28.11±2.36<sup>b</sup></td>
</tr>
<tr>
<td>2024 + 2018</td>
<td>89.31±2.87<sup>ab</sup></td>
<td>35.52±2.57<sup>b</sup></td>
</tr>
<tr>
<td>2024 + PHBA</td>
<td>82.94±4.20<sup>bc</sup></td>
<td>29.82±1.96<sup>b</sup></td>
</tr>
</tbody>
</table>

Mean±SE
^{abc}Means not sharing a common superscripts are significantly different between groups at p<0.05
Fig. 3-3. Effect of mixtures of functional bioflavonoids on hepatic total-cholesterol in high cholesterol-fed rats (mg/g). a Mean±SE, ab Means not sharing a common superscripts are significantly different between groups at p<0.05.

Fig. 3-4. Effect of mixtures of functional bioflavonoids on hepatic triglyceride in high cholesterol-fed rats (mg/g). a Mean±SE, abc Means not sharing a common superscripts are significantly different between groups at p<0.05.
Fig. 3–5. Effect of mixtures of functional bioflavonoids on hepatic HMG-CoA reductase activities in high cholesterol-fed rats. Mean±SE. Means not sharing a common superscripts are significantly different between groups at p<0.05.

Fig. 3–6. Effect of mixtures of functional bioflavonoids on hepatic ACAT activities in high cholesterol-fed rats. Mean±SE. Means not sharing a common superscripts are significantly different between groups at p<0.05.
Table 3–6. Effect of mixtures of functional bioflavonoids supplementation on hepatic HMG-CoA reductase and ACAT activities in high cholesterol-fed rats

<table>
<thead>
<tr>
<th>Group</th>
<th>HMG-CoA reductase (pmole/min/mg protein)</th>
<th>ACAT (pmole/min/mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>181.19±15.44a</td>
<td>252.44±8.28a</td>
</tr>
<tr>
<td>Naringenin</td>
<td>153.86±14.50b</td>
<td>205.39±6.52b</td>
</tr>
<tr>
<td>Hesperetin</td>
<td>119.22±4.56cd</td>
<td>180.20±5.50c</td>
</tr>
<tr>
<td>Ferulic acid + PHBA</td>
<td>101.88±3.61ad</td>
<td>191.88±6.45bc</td>
</tr>
<tr>
<td>Ferulic acid + 2024</td>
<td>140.35±4.11bc</td>
<td>—</td>
</tr>
<tr>
<td>2024 + 2018</td>
<td>137.92±7.57bc</td>
<td>140.34±5.67d</td>
</tr>
<tr>
<td>2024 + PHBA</td>
<td>113.25±1.74cd</td>
<td>120.80±3.08d</td>
</tr>
</tbody>
</table>

Mean±SE

abcMeans not sharing a common superscripts are significantly different between groups at p<0.05

Table 3–7. Effect of mixtures of functional bioflavonoids supplementation on TBARS levels in high cholesterol-fed rats

<table>
<thead>
<tr>
<th>Group</th>
<th>Plasma TBARS (nmole/ml)</th>
<th>Hepatic TBARS (nmole/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>3.00±0.20a</td>
<td>30.29±1.00a</td>
</tr>
<tr>
<td>Naringenin</td>
<td>1.61±0.12a</td>
<td>25.21±0.75b</td>
</tr>
<tr>
<td>Hesperetin</td>
<td>2.23±0.16b</td>
<td>24.15±0.81b</td>
</tr>
<tr>
<td>Ferulic acid + PHBA</td>
<td>1.88±0.11bcd</td>
<td>26.58±0.93b</td>
</tr>
<tr>
<td>Ferulic acid + 2024</td>
<td>2.05±0.12bc</td>
<td>24.65±0.85b</td>
</tr>
<tr>
<td>2024 + 2018</td>
<td>1.71±0.13cd</td>
<td>23.74±1.15b</td>
</tr>
<tr>
<td>2024 + PHBA</td>
<td>1.82±0.07bcd</td>
<td>25.61±1.20b</td>
</tr>
</tbody>
</table>

Mean±SE

abcMeans not sharing a common superscripts are significantly different between groups at p<0.05
Table 3–8. Effect of mixtures of functional bioflavonoids supplementation on hepatic antioxidant enzyme activity in high cholesterol–fed rats

<table>
<thead>
<tr>
<th>Group</th>
<th>SOD (unit/mg)</th>
<th>Catalase (µmole/mg/min)</th>
<th>GSH–Px (nmole/mg/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>2.75±0.16<sup>a</sup></td>
<td>15.70±0.91<sup>a</sup></td>
<td>8.90±0.25<sup>a</sup></td>
</tr>
<tr>
<td>Naringenin</td>
<td>2.74±0.11<sup>a</sup></td>
<td>15.80±0.84<sup>a</sup></td>
<td>8.98±0.20<sup>a</sup></td>
</tr>
<tr>
<td>Hesperetin</td>
<td>2.50±0.10<sup>ab</sup></td>
<td>19.07±1.14<sup>bc</sup></td>
<td>8.55±0.24<sup>ab</sup></td>
</tr>
<tr>
<td>Ferulic acid + PHBA</td>
<td>2.67±0.13<sup>ab</sup></td>
<td>16.90±0.86<sup>ab</sup></td>
<td>9.08±0.38<sup>a</sup></td>
</tr>
<tr>
<td>Ferulic acid + 2024</td>
<td>2.85±0.20<sup>a</sup></td>
<td>20.37±1.44<sup>c</sup></td>
<td>8.59±0.23<sup>ab</sup></td>
</tr>
<tr>
<td>2024 + 2018</td>
<td>2.25±0.14<sup>b</sup></td>
<td>19.33±1.49<sup>bc</sup></td>
<td>8.51±0.24<sup>ab</sup></td>
</tr>
<tr>
<td>2024 + PHBA</td>
<td>2.42±0.13<sup>ab</sup></td>
<td>15.31±0.60<sup>a</sup></td>
<td>7.88±0.27<sup>b</sup></td>
</tr>
</tbody>
</table>

Mean±SE

^{a,b} Means not sharing a common superscripts are significantly different between groups at p<0.05
<table>
<thead>
<tr>
<th>년도</th>
<th>세부연구개발목표</th>
<th>달성내용</th>
<th>달성도 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000년도</td>
<td>Citrus bioflavonoid 대사산물 투여를 위한 동물사육실험</td>
<td>SD계 수컷 환자(n=100)를 10군의 실험군(대조군, lovastatin군, 대사산물 8종류 각각 급여군)으로 나누어 5주간 사육하여 회복하였음.</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>In vivo efficacy 및 작용기작도출</td>
<td>혈장 및 조직 중의 지질농도 변화, 콜레스테롤 조절효소의 활성도 측정, 지질파산화 생성물 분석, 항산화 효소 활성도 측정을 통해 실험물질의 기능성 검정을 수행하였음.</td>
<td>100%</td>
</tr>
<tr>
<td>2001년도</td>
<td>Bioflavonoids 협성유도체 투여를 위한 동물사육실험</td>
<td>SD계 수컷 환자(n=100)를 6군의 실험군(대조군, lovastatin군, probucol 군, hesperetin군, 협성유도체 2종군)으로 나누어 6주간 사육하여 회복하였음.</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>In vivo efficacy 및 작용기작도출</td>
<td>혈장 및 조직 중의 지질농도 변화, 콜레스테롤 조절효소의 활성도 측정, 분비 세포, 지질파산화 생성물 분석, 항산화 효소 활성도 측정을 통해 실험물질의 기능성 검정을 수행하였음.</td>
<td>100%</td>
</tr>
<tr>
<td>2002년도</td>
<td>선별된 유용물질의 혼합조성품을 동물실험에 보충함</td>
<td>SD계 수컷 환자(n=70)를 7군의 실험군(대조군, hesperetin군, naringenin군, 시체품조성물군)으로 나누어 6주간 사육하여 회복하였음.</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>In vivo 효능의 작용기작효능 및 혼합조성물의 생리활성 확인</td>
<td>혈장 및 조직 중의 지질농도 변화, 콜레스테롤 조절효소의 활성도 측정, 지질파산화 생성물 분석, 항산화 효소 활성도 측정을 통해 실험물질 조성의 유용성 검정을 수행하였음.</td>
<td>100%</td>
</tr>
</tbody>
</table>
제 5 장 연구개발결과의 활용계획

제 1 절 기술적 효과

1. Bioflavonoid 대사산물 및 그 유도체의 지질대사 개선효과를 테스트함으로써 심혈관질환 개선제 후보물질의 다양한 생체 작용기작이 일차적으로 규명되었음.
2. 심혈관 질환 개선용 활성 물질 개발로 세계적인 선도자 역할과 이 분야 연구의 선진국화가 가능함.
3. 본 연구결과를 기반으로 하여 개발된 기술은 산업화를 계획하여 기술이전이 가능함.
4. 이를 기반으로한 기능성 식품 및 건강식품 개발을 위한 신물질 탐색의 지속된 양상을 도모할 수 있음.

제 2 절 경제적 효과

1. 심혈관 예방 및 치료용 기능성 식품소재 탐색으로 국제시장으로의 진출도 기대할 수 있으며 생명공학산업화 기술 육성에 기여할 수 있음.
제 6장 연구개발과정에서 수집한 해외과학기술정보

최근 해외 각국에서는 기능성 식품의 개발과 관련하여 정부자원의 기능성제품의 질병위험감소 표시와 인체시험 효능검정을 의미화하고 있는 추세(2000, 보건산업기술동향지). 따라서 본 연구개발과정의 동물시험을 통해 검정된 기능성 화합물의 효능검정 결과는 향후 인체시험에서 그 유용성이 검정되어야 함이 타당함.

그 외에도 2009년 8월 27일부터 시행될 예정인 국내 건강기능식품법의 기준(안)에도 건강기능식품의 인체시험에 의한 유용성 검정을 권장하고 있음 (2003, 보건복지부 약물정책과). 본 연구의 동물시험에서 나타난 flavonoid 대사산물들 및 함성 유도체들의 기능성은 향후 산업화가 가능하며, 산업화 단계를 위해 서는 동물시험에 사용된 각 기능성 화합물에 대해 기능성 성분들의 최종 배합비율 형태로 인체효능이 검정되어야 함.
제 7 장 참고문헌

Bok SH, Lee SH, Park YB, Bae KH, Son KH, Jeong TS, Choi MS. Plasma and hepatic cholesterol and hepatic activities of 3-hydroxy-3-methyl-glutaryl-CoA reductase and acyl CoA:cholesterol acyltransferase are lower in rats fed citrus peel extract or a mixture of citrus bioflavonoids. J Nutr 129:1182-1185, 1999

Gillies PJ, Rathgeb KA and Robinson CS. "Regulation of Acyl-CoA:Cholesterol Acyltransferase activity in normal and atherosclerotic rabbit aortas: Role of a cholesterol substrate pool." Experimental and Molecular Pathology 44: 320-339, 1986

보건기술통합지 2000년 2/4 통권 제 2호 p25-40. 2. 기능성 식품(functional foods)제품 및 연구개발 동향

Frank Czubayko, Brigitte Beumers, Stefan Lammsfuss, Dieter Littjohann, and Klaus von Bergmann (1992) "A simplified micro-method for quantification of fecal excretion of neutral and acidic sterols for outpatient

American Institute of Nutrition 16:1397–1406

Park YB, Jeoung NH, Kim HS and Choi MS (1992) "Reaction of HDL-bound cholesteryl ester transfer protein and a new method for its activity measurement” Kor. Biochem. 25: 409–417

특정연구개발사업 연구결과 활용계획서

<table>
<thead>
<tr>
<th>사업명</th>
<th>국책연구개발사업</th>
</tr>
</thead>
<tbody>
<tr>
<td>종사업명</td>
<td>국책생명공학실용화사업</td>
</tr>
<tr>
<td>세부사업명</td>
<td></td>
</tr>
</tbody>
</table>

과제명

Citrus Bioflavonoids 유도체 및 대사산물로부터 심장순환기질환 예방치료용 유용물질의 개발

연구기관

한국생명공학연구원 연구책임자 정태숙

총연구기간

2000년 8월 10일 ~ 2003년 5월 31일 (34 개월)

총 연구비 (단위 : 천원)

<table>
<thead>
<tr>
<th>정부출연금</th>
<th>민간부담금</th>
<th>합계</th>
</tr>
</thead>
<tbody>
<tr>
<td>348,000</td>
<td>75,000</td>
<td>444,000</td>
</tr>
</tbody>
</table>

기술분야

생명과학 (생물자원생산이용기술)

참여기업

(주) 마이크로아이디

공동연구기관

위탁연구기관

경북대학교 최명숙

연구결과활용 (당항목에 (V) 표시)

1. 기업화 ()
2. 기술이전 (V)
3. 후속연구추진 (V)
4. 타사업에 활용 ()
5. 선물 및 기초연구 ()
6. 기타목적활용 (교육연구) ()
7. 활용중단(미활용) ()
8. 기타 ()

특성연구개발사업 처리규정 제 31조(연구개발결과의 보고) 제 2항에 의거

연구결과 활용계획서를 제출합니다.

첨부

1. 연구결과 활용계획서 1부.
2. 기술요약서 1부 2003년 7월 30일

연구책임자

정태숙

연구기관장

양규환

과학기술부장관 귀하
여백
연구결과 활용계획서

1. 연구목표 및 내용

실험 연구결과로부터 꿀과주출액, citrus bioflavonoids의 고지혈증 및 동맥경화증 예방, 치료 효과를 in vivo 동물실험 약효 검증을 통해 확인하였다. 그러나 그 활성을 나타내는 Bioflavonoids가 in vitro 효소계에서는 활성을 나타내지 않으나, 생물체에 투여 후 고지혈증 및 동맥경화증에 대한 약효를 나타내며, 간조직의 지방대사 관련 효소 활성을 억제한다. 한편 보고된 자료에 의하면 Citrus Bioflavonoids는 흡수된 후, 생체내 대사과정을 거쳐 빠르게 aglycon (hesperetin, naringenin 등)으로 전환되며, 이 aglycon들은 germ-free animal에서는 생성되지 않으며, 소장에서 하중물질로 살균시 이 물질의 생성이 완전히 억제된다. 따라서 baterially-generated aglycon 또는 그들의 대사산물이 흡수되어 항고혈압 및 항동맥경화 효과를 나타낼 것으로 추정된다. 따라서 본 연구대상체로 식품의 고리 Bioflavonoids 제대 대사산물 및 그 유도체의 약효 및 작용기전을 실험동물로 대상으로 종합적으로 규명하여 의약품 후보물질을 도출하고자 하며, 이 물질들을 이용한 기능성 식품제조 및 개발을 확립하고자 한다.

2. 연구수행결과 현황(연구종료시점까지)

가. 특허(실용신안) 등 자료목록

<table>
<thead>
<tr>
<th>발명명칭</th>
<th>특허공고번호</th>
<th>공고일자</th>
<th>발명자</th>
<th>출원/등록국</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>플라바인 유도체 및 이를 포함하는 혈증 지질 농도 관련 질환의 예방 및 치료용 조성물</td>
<td>2000-87185/ 2000.12.30</td>
<td>한국생명 공학(연) 정대숙의 8인</td>
<td>대한민국</td>
<td></td>
<td></td>
</tr>
<tr>
<td>네오패스피린디미이드로필론을 포함하는 동맥경화증, 고지혈증, 간질환, 고혈당증의 예방 및 치료용 조성물</td>
<td>2000-58788/ 2000.10.6</td>
<td>291.145/ 2001.3.8</td>
<td>한국생명 공학(연) 정대숙의 12인</td>
<td>대한민국</td>
<td></td>
</tr>
<tr>
<td>플라바인의 에스테르 유도체 및 이를 포함하는 혈증 지질 농도 관련 질환의 예방 및 치료용 조성물</td>
<td>2002-20850/ 2002.4.17</td>
<td>한국생명 공학(연) 정대숙의 9인</td>
<td>대한민국</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Citrus peel extract as inhibitor of ACAT, inhibitor of macrophage-lipid complex accumulation on the arterial wall and preventive or treating agent for hepatic diseases</td>
<td>517728/ 2000.4.28</td>
<td>3,333,777/ 2002.7.26</td>
<td>한국생명 공학(연) 정대숙의 21인</td>
<td>일본</td>
<td></td>
</tr>
</tbody>
</table>

- 149 -
<table>
<thead>
<tr>
<th>발명명칭</th>
<th>특허공고번호</th>
<th>공고일자</th>
<th>발명자</th>
<th>출원/등록국</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flavanone derivatives and composition for preventing or treating blood lipid level-related diseases comprising same</td>
<td>09/768,740/2001.1.24</td>
<td>6,455,577/2002.9.24.</td>
<td>한국생명공학(연세대)</td>
<td>미국</td>
<td></td>
</tr>
</tbody>
</table>

나. 프로그램 등록목록

<table>
<thead>
<tr>
<th>프로그램명칭</th>
<th>등록번호</th>
<th>등록일자</th>
<th>개발자</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>해당사항없음</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

d. 노하우 내역

1. 본 연구팀이 확보한 기술은 심장순환기질환 중, 특히 고지혈증과 동맥경화를 타겟으로하여, 여러가지 약리활성성의 평판 검사가 가능하다. 즉, 본 연구과제를 통하여 *citrus bioflavonoids* 및 이들 *flavonoids*의 생체내 대사산물과 혈상유도체에 대한 *in vitro*, *in vivo* 검색을 수행하였다. *In vitro* 검색 방법으로는 HMG-CoA reductase, ACAT, LDL-oxidation 등에 대한 약제 활성 검색이 가능하며, 또한 *in vitro* 활성 검색을 통해 신들레 유용물질을 검정하기 위하여 *in vitro screening* 방법으로 spot test를 사용한 다. Spot test는 대상 시료를 등분하여 생체내 저질대사에 미치는 영향을 단기간(10일)에 걸쳐 검정하여 항후 고지혈증 및 동맥경화와 같은 성인병 예방 및 치료용 *in vivo* 활성검색용 후보물질을 보다 신속하게 탐색할 수 있다. 또한 이들 후보물질들에 대한 약 2개월 이상의 동물실험을 통한 *in vivo* 활성 검색이 용이하며, 혈액 및 조직을 이용한 생화학적, 분자생물학적 작용기작 규명을 할 수 있는 기술력을 확보하고 있다.

2. 본 연구과제를 통해 탐색한 *citrus flavonoids* 대사산물 중 3,4-DHPPA와 4-HPMA는 지질강하 효과 및 항도약경화 효과가 우수하며, 이들은 모두 생체내 대사산물로서 생체내 독성이 없을 것으로 예상하였으며, 마우스에 대한 경구 투여시 LD50 값은 2~5g/kg 사이에 존재한다는 사실로부터 독성을 우려하지 않아도 됨이 입증되었고, 한편 자연계에 존재하는 식물체에도 함유되어 있는 물질이다.

3. *Flavonoids* 대사산물의 혈상유도체인 L2018, L2024는 여러가지 약리활성 중에서도 특히 HMG-CoA reductase 활성 저해, ACAT 활성 저해, LDL 산화억제, apoA-I의 발현이 증가하는 등의 작용기작을 통해 천연한 저산백질 대사 개선효과와 항도약경화 효과를 나타내면서도, 간독성이 없는 물질임을 알 수 있었다. 따라서 본 연구팀에서는 후속 연구를 통해 이들 화합물들과 바탕으로 보다 약리활성이 뛰어난 유도체의 합성 및 이들의 활성 검색이 가능하며, 이는 국내 의약품 분야, 식품의약 및 기능성식품의 개발 및 실용화를 위한 산업 발전에 크게 기여한 것으로 평가된다.
라. 발생품 및 시작품 내역

연구결과 (75쪽 참조)에 설명한 방법대로 9단계의 공정 (원료정량 → 분쇄 및 혼합공정 → 연합공정 → 환수공정 → 질환공정 → 성황공정 → 진조공정 → 코팅공정 → 포장공정)을 거쳐 34-DHPPA 및 L2018을 이용한 유효제품을 개발하였으며, 이들 시제품 조성품에 대한 효능 검정 및 작용기작 규명, 독성검사를 3차년도에 수행하였다.

마. 논문계재 및 발표 실적

논문계재 실적

<table>
<thead>
<tr>
<th>학술지 명칭</th>
<th>제 목</th>
<th>개재연월일</th>
<th>호</th>
<th>발행 기관</th>
<th>국 명</th>
<th>SCI계재 여부</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food Industry & Nutrition</td>
<td>Cholesterol-lowering or antiatherogenic effect of citrus bioflavonoids and their mechanisms</td>
<td>2000년 8월</td>
<td>5: 21-26</td>
<td>한국식품영양과학회</td>
<td>한국</td>
<td>X</td>
</tr>
<tr>
<td>Clinica Chimica Acta</td>
<td>Lipid-lowering and antioxidative activities of 3,4-di(OH)-cinnamate and 3,4-di(OH)-hydrocinnamate in cholesterol-fed rats</td>
<td>2001년 12월</td>
<td>314: 221-229</td>
<td>Elsevier</td>
<td>미국</td>
<td>O</td>
</tr>
<tr>
<td>Clinica Chimica Acta</td>
<td>Lipid-lowering efficacy of hesperetin metabolites in high-cholesterol fed rats</td>
<td>2003년 1월</td>
<td>327: 129-137</td>
<td>Elsevier</td>
<td>미국</td>
<td>O</td>
</tr>
</tbody>
</table>

계: 건수 7
<table>
<thead>
<tr>
<th>학술회의 명칭</th>
<th>제목</th>
<th>개최연월일</th>
<th>주</th>
<th>발행 기관</th>
<th>국 명</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd Annual conference on Arteriosclerosis, Thrombosis and Vascular Biology</td>
<td>Anti-atherogenic effects of citrus bioflavonoids, naringin and naringenin, and their metabolite in high cholesterol-fed rabbits</td>
<td>2001년 5월 11-13일</td>
<td></td>
<td>American Heart Association (AHA)</td>
<td>미국</td>
</tr>
<tr>
<td>17th International Congress of Nutrition</td>
<td>Effect of naringenin and its derivative on plasma and hepatic lipid in high-cholesterol fed rabbits</td>
<td>2001년 8월 27-31일</td>
<td></td>
<td>International Nutrition Association</td>
<td>Austria</td>
</tr>
<tr>
<td>17th International Congress of Nutrition</td>
<td>Plasma and hepatic lipids are lower in rats fed cinnamate derivatives</td>
<td>2001년 8월 27-31일</td>
<td></td>
<td>International Nutrition Association</td>
<td>Austria</td>
</tr>
<tr>
<td>17th International Congress of Nutrition</td>
<td>Comparison of cholesterol-lowering efficacies of naringin and lovastatin in rabbits fed high-cholesterol diet</td>
<td>2001년 8월 27-31일</td>
<td></td>
<td>International Nutrition Association</td>
<td>Austria</td>
</tr>
<tr>
<td>한국영양학회 추계미사료전</td>
<td>Citrus flavonoid 및 화합물의 콜레스테롤 저하작용</td>
<td>2001년 9월</td>
<td>한국영양학회</td>
<td>한국</td>
<td></td>
</tr>
<tr>
<td>3rd Annual conference on Arteriosclerosis, Thrombosis and Vascular Biology</td>
<td>Lipid-lowering and anti-atherogenic effects of primary metabolic products of naringin and hesperidin in cholesterol-fed rats or cholesterol-fed LDLx knockout mice</td>
<td>2002년 4월 6-8일</td>
<td></td>
<td>American Heart Association (AHA)</td>
<td>미국</td>
</tr>
<tr>
<td>2002 대한약학회 춘계학술대회</td>
<td>Antioxidant Effect of Flavonoids and Phenolic Acids on Early Phase of Cu2+-Catalyzed LDL Oxidation</td>
<td>2002년 4월 18-19일</td>
<td>대한약학회</td>
<td>한국</td>
<td></td>
</tr>
<tr>
<td>2003년도 한국지질·동맥경화학회 춘계학술대회</td>
<td>3,4-dioH-hydrocinnamate inhibit atherogenesis by the inhibition of acyl-CoA: cholesterol acyltransferase in cholesterol fed rabbit and low density lipoprotein receptor knock-out mice</td>
<td>2003년 3월 7-8일</td>
<td>한국지질·동맥경화학회</td>
<td>한국</td>
<td></td>
</tr>
<tr>
<td>2003년도 춘계 한국식품자장유통학회 제22차 학술발표회</td>
<td>Citrus Bioflavonoids의 미세 유도체 및 대사산물을 이용한 고지혈증 및 동맥경화의 예방 및 치료에 관한 연구</td>
<td>2003년 4월 25일</td>
<td>한국식품자장유통학회</td>
<td>한국</td>
<td></td>
</tr>
<tr>
<td>계: 건수</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>
3. 연구성과

올해 8월부터 건강식품기능법이 발효됨에 따라 소규모 형태로라도 시험품을 이용한 사람에 대한 약효
검정이 실시되어야 기술이전이 가능하며, 이를 위한 후속 연구 및 기술이전을 추진 중임.

4. 기술이전 및 연구결과 활용계획

가. 당해연도 활용계획

올해 8월부터 건강식품기능법이 발효됨에 따라 국책생명공학설용화사업(2002-2003)을 수행하면서 얻은
핵심연구결과인 citrus flavonoids 대사산물인 3,4-DHPPA와 citrus flavonoid 대사산물의 합성유도제인
L.2018의 지식작용 및 항암목적화 효과를 바탕으로 건강기능식품, 식품의약으로 개발하기 위해서는 소
규모 형태로라도 시험품을 이용한 사람에 대한 약효 검정이 실시되어야 하며, 이 후속연구를 위한 연구
과제 도출 또는 기존의 연구결과를 이용한 기술 이전을 통해 소규모 임상시험을 하고, 이를 결과를 바탕
으로 Bioflavonoid 대사산물, 합성유도체와 보조제로 성분조성비에 따른 기능성식품 제조기술을 확보하고자
한다.

나. 활용방법

- 유용물질의 고지혈증, 동맥경화 예방, 치료 효과의 과학적인 규명을 통해 차세대 의약품 개발분야에
 활용
- 신의약 개발을 위한 전임상, 임상 실험에 활용
- 신의약 및 식품용 신소재 개발
- 참여기업에 관련 기술이전을 통해 건강식품 및 의약품 개발 및 실용화
- 생물자원 확보 및 이용기술 향상으로 국가경쟁력 강화
- 항후 한반도의 고지혈증 예방 및 치료제 개발의 기초자료로 유용하게 활용 가능함
- 기능성 식품 및 건강식품 개발을 위한 신물질 담색의 지속된 양상을 도모함
- 유용물질을 포함하는 심혈관계 질환 예방용 의약식품(medical food), 기능성 식품(functional food),
 보조식품(dietary supplement) 개발을 위한 새로운 item 창출로 신산업군 창출 기능 및 산업화에
 활용

다. 차년도 이후 활용계획

최근 들어 “효과가 없는 기능성식품 많아”(전자신문, 2003. 4. 2), “수술 가능한 기능성식품 개발 혁신
여야(전자신문, 2003. 3. 31)”라는 보도를 접하면서 in vivo 효과가 검증된 기능성 식품소재의 도출이 절실
함을 새삼 인지했다. 따라서 본 연구팀은 모델동물의 이용과 기능성이 검증된 물질에 대한 소규모 임상
시험을 통해 약효를 검정하고, 이 연구결과를 Impact factor가 높은 SCI 국제저널에 발표하여, 그 작용
기작 및 기능성을 공인받고자 한다. 또한 선발된 후보물질들의 질환모델동물을 이용한 고지혈증, 동맥경
화 예방 효과는 검증되었으므로 향후 치료 효과를 검증하는 한편, 후보물질의 대량생산공정을 확립하여
장기화 및 안전성 검사, ADME 등 전립상 시험을 거쳐 신의약 후보물질로 개발을 위한 연구를

- 153 -
전행하고자 한다. 또한 관련기업에 기술이전을 통해 건강식품 및 의약품 개발 및 실용화를 추구하고자 한다.

5. 기대효과

- 항동해경제/지질대사조절 기능성 식품소재 개발 기술은 식품산업 중의 기능성 식품과 관련된 식품의약, 건강보조식품, 식품첨가물 개발에 관련되어 있으며, 성인 59%가 건강식품을 이용해 본 경험이 있고, 68%는 건강식품에 대한 효능효과가 있다고 판단하고 있어, 관계에 비해 인식이 크게 향상되었다. 기능성 식품은 2000년 기준으로 국내 식품 총생산액 31조원의 3%를 차지하고 있으며, 약 317개의 관련업체(국내기업 148개, 수입업체 178개)가 있다(식품과학과 산업, 2000, 35(3) : 34-42).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>한국(억원)</td>
<td>11,200</td>
<td>9,800</td>
<td>6,200</td>
<td>8,700</td>
<td>10,500</td>
<td>12,000</td>
<td>13,500</td>
</tr>
<tr>
<td>미국(억달러)</td>
<td>235</td>
<td>258</td>
<td>279</td>
<td>299</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>일본(억엔)</td>
<td>6,200</td>
<td>6,500</td>
<td>6,900</td>
<td>7,500</td>
<td>8,500</td>
<td>9,000</td>
<td>9,700</td>
</tr>
</tbody>
</table>

(Source: Nutrition Business Journal, 2001)

- 식품대기업의 건강보조식품 시장 진입, 다국적 유통업체 및 제약산업체의 적극적인 참여로 인해 기능성식품은 경제적에 들어선 식품산업 전반에 커다란 역할을 할 것으로 보이고 있다. 일반적으로 식품산업은 제약산업의 5-10 배의 규모를 가지고 있으며, 선진국으로 갈수록 식품산업의 규모가 크다. 따라서 기능성식품으로 축발된 식품과 의약품의 산업간, 학문간 부분적 통합 응용이 활발하게 지고 있다. 즉, 건강한 식습관을 추구하는 기본적인 육식과 노령화 사회로의 전환에 따른 심장순환기질환 등의 증가에 따른 의약품 수요의 기능성 식품 수요로의 전환은 현재 514억달러에 달하는 세계적 심혈관계통 의약품 시장(판매 1위: Zocor (66.7억달러), 판매 2위: Lipitor (64.5억달러), 투축 모두 고지혈증 치료제임)의 심혈관계 기능성식품으로의 전환을 예고하고 있다. 세계의 추세로 보아 2005년도 미국의 기능성식품 시장은 500억달러를 넘어설 것으로 예상되며, 향후 10년간 매년 기속적으로 약 10%의 성장을 지속할 것으로 전망하고 있다 (Source: Nutrition Business Journal; PharmaBusiness; IMS Health, 제약산업정보, 2002. 11).
▲ 심혈관질병 인명질환의 전문가, 연구, 개발, 소비자 이용, 문화, 및 금융욱의 식품을 개발할 수 있는 연구체계를 국내에 정착시키고 동시에 경제적 효익과 개발에 원동력이 될

▲ 기능성식품 소재의 도출 및 작용기작을 SCI 등재 국제저널에 발표하여 그 기능성을 공인받고, 대외적인 홍보를 통해 국민생활 보건에 이바지하며, 의료비 부담의 절감에 기여

▲ 유용물질특허, 제조특허를 통한 신용재산권 확보

▲ 최근 우리나라 식생활의 서구화로 고지혈증을 비롯한 이명질환율 증가가 급속히 증가하고 있으며, 이러한 현상의 증가는 동맥경화성 심장질환 증가시킨다. 이로 인한 사망률이 증가되고 있음. 또한 고지혈증 치료 약물은 대부분 수입에 의존하는 상태이므로, 국내 기술력을 이용한 효과적인 기능성식품, 식품의약이 개발될 경우 수입대체 효과 및 수출에 의한 의약품 특허 가능함

▲ 유용물질을 포함하는 식품의약 (Nutraceuticals), 기능성식품 (Functional food), 보조식품 (dietary supplement) 개발을 통한 새로운 item 창출로 식품 및 기능성식품 업계의 활성화

▲ 산계계과 공동연구그룹을 형성하여 확보된 in vitro, in vivo, 세포계 활성물질 탐색 기술, 활성물질 분리·정제 기술, 기능성 식품의 소재화 기술, 특히 국내에는 부족한 지단백질 분석 기술 등의 확산과 전문 연구인력의 양성에 기여

6. 문제점 및 전의사항 (연구성과의 제고를 위한 제도·규정 및 연구관리 등의 개선점을 기재)

▲ 기능성 식품기술의 기반 기술이 선진국 대비 기술수준의 65%선에 머물고 있고, 핵심기술의 격차는 5년 이상이므로, 기능성 소재의 탐색과 식품첨가물로서의 단순 기술에서 발전하여 고부가가치를 획득하기 위해서는 이들 물질들의 효능 및 안전성에 대한 구체적인 과학적 효능 검증 및 분석 기술이 필요하다. 즉 단면적이고, 소규모 기능성식품 연구분야의 정부 지원에 세계시장을 가난하고, 세계시장에 진출할 수 있는 기능성식품 또는 식품의약 개발을 위한 전주적인 지원이 있어야 할 것으로 생각된다.

▲ 2003년 8월부터 시행되는 건강식품기능법이 발효됨에 따라 연구개발 측면에서는 많은 성과가 있을 것으로 예측되며, 기능성식품의 약효 표시의 범위가 용매시험 등을 통해 SCI저널에 발표하여 공인된 정도 또는 임상시험을 통한 약효검증 여부에 따라 연구개발 기술의 이전 및 제품개발 후 관매에 엄청난 압박이 될 수도 있을 것으로 판단된다.
여백
기술 요약서

기술의 명칭

Citrus Bioflavonoids 유도체 및 대사산물로부터 심장순환기질환 예방치료용 유용성물질의 개발 기술

기술을 도출한 과제현황

<table>
<thead>
<tr>
<th>과제관리번호</th>
<th>MI-0015-0012</th>
</tr>
</thead>
<tbody>
<tr>
<td>과제명</td>
<td>Citrus Bioflavonoids 유도체 및 대사산물로부터 심장순환기질환 예방치료용 유용성물질의 개발</td>
</tr>
<tr>
<td>사업명</td>
<td>국책연구개발사업</td>
</tr>
<tr>
<td>세부사업명</td>
<td>국책생명과학융합과사업</td>
</tr>
<tr>
<td>연구기관</td>
<td>한국생명과학연구원 기관응용 정부출연연구소</td>
</tr>
<tr>
<td>참여기관(기업)</td>
<td>(주) 마이크로아이디</td>
</tr>
<tr>
<td>출연연구기간</td>
<td>2000. 8. 10 - 2003. 5. 31</td>
</tr>
<tr>
<td>총연구비</td>
<td>정부 (348,000)천원 (\text{합계}(444,000))천원</td>
</tr>
</tbody>
</table>

- **연구책임자**
 - 성명 | 정 대숙 |
 - 근무기관 부서 | 한국생명과학연구원, 서울대센터 |
 - E-mail | tsjeong@kribb.re.kr |

- **위탁연구책임자**
 - 성명 | 정 대숙 |
 - 근무기관 부서 | 경북대학교 식품영양학과 |
 - E-mail | mschoi@knut.ac.kr |

- **실무연락책임자**
 - 성명 | 나 영훈 |
 - 연락처 | 연구관리과 |
 - E-mail | wonwoo93@kribb.re.kr |
 - 전화번호 | 042-860-4722 |
 - FAX | 042-860-4596 |

주소 | (305 - 333) 대전시 유성구 이은동 52 |
[기술의 주요내용]

선행 연구결과로부터 과일추출액, citrus bioflavonoids의 고지혈증 및 동맥경화증 예방, 치료 효과를 in vitro 동물실험 약효 검증을 통해 확인하였다. 그러나 그 활성을 나타내는 Bioflavonoids가 in vivo 효소계에서는 활성을 나타내지 않으나, 생물체의 투여 후 고지혈증 및 동맥경화증에 대한 약효를 나타내며, 간호와의 지방분해 관련 효소의 활성을 억제한다. 한편 보고된 자료에 의하면 Citrus Bioflavonoids는 흡수된 후, 생체내 대사과정을 거쳐 빠르게 aglycon (hesperetin, naringenin 등)으로 전환되며, 이 aglycon들은 germ-free animal에 성장되기 어렵으며, 소장에서 향신물질로 삼각시 이 물질의 생성이 원활히 억제된다. 따라서 baterially-generated aglycon 또는 그들의 대사산들이 흡수되어 항고지혈 및 항동맥경화 효과를 나타낼 것으로 추측된다. 따라서 본 연구결과를 통해 Citrus Bioflavonoids 체내 대사산물 및 그 유도체의 약효 및 작용기작을 실험동물들 대상으로 종합적으로 규명하여 의약품 후보물질로 도출하고자 하며, 이 물질들을 이용한 기능성 식품제로 및 개발을 확립하고자 했다.

<기술적 특성>

(2) 지질감소, 항동맥경화 효과를 보이며도 다른 약제(lovastatin)와는 달리 간독성을 보이지 않음.

(3) 합성물질 3,4-DHPPA의 마우스에 대한 경구투여시 LD₅₀ 값은 2~5g/kg 사이에 존재함. L2018의 마우스에 대한 경구투여는 5g/kg 용량에서도 사망률, 일반증상 및 부정소견에 있어서 특이성학적 변화를 야기시키지 않았고, LD₅₀값은 5g/kg 이상에 존재할 것으로 판단됨.

(4) 따라서 관련된 특성 검감을 완료하여 일부는 이미 등록되었으며, 식품의약 및 기능성식품의 개발 및 실용화를 위한 산업 발전에 크게 기여할 것으로 예상됨.

[용도·이용분야]

(1) 유용물질을 포함하는 식품관련 음식, 의약품(medical food, 기능성 식품(functional food), 보조식품(dietary supplement) 개발을 위한 새로운 item 창출로 산업군 창출 가능 및 산 업화에 활용

(2) 유용물질의 고지혈증, 동맥경화 예방, 치료 효과의 과학적 근거를 통해 차세대 의약품 개발분야 응용

(3) 관련기업에 기술이전을 통해 건강식품 및 의약품 개발 및 실용화

(4) 민주 한국인의 고지혈증 예방 및 치료체 개발의 기초자료로 유용하게 활용 가능함

- 158 -
■ 기술의 분류

기술코드 41210 (3 Digit)

기술분야 (1개만 선택(■로 표시)하여 주십시오)

- 농림산업
- 기계설비
- 소재
- 정밀화학 공정
- 생명과학
- 원자력
- 자동
- 에너지
- 항공 우주
- 해양
- 교통
- 보건 의료
- 환경
- 기초 원천
- 기타

기술의 활용유형 (1개만 선택(■로 표시)하여 주십시오)

- 신제품 개발
- 신공정 개발
- 기존제품 개선
- 기존공정 개선
- 기타

기술의 용도 (복수 선택(■로 표시)가능합니다)

- 기계설비
- 부품소자
- 원료제료
- 소프트웨어
- 가공처리 기술
- 자동화 기술
- 유통 관리 등 현장의 기술
- 제품 설계 기술
- 공정 설계 기술
- 기타 (기능성 식품, 식품의약, 의약품 개발)

■ 산업재산권 보유현황 (기술과 관련한)

<table>
<thead>
<tr>
<th>권리유형</th>
<th>명칭</th>
<th>국가명</th>
<th>출원일</th>
<th>출원(등록)일자</th>
<th>출원(등록)번호</th>
</tr>
</thead>
<tbody>
<tr>
<td>특허</td>
<td>플라비노 유도체 및 이를 포함하는 혈중 지질 농도 관련 질환의 예방 및 치료용 조성물</td>
<td>대한민국</td>
<td>출원</td>
<td>2000. 12. 30</td>
<td>2000-87185</td>
</tr>
<tr>
<td>특허</td>
<td>데오에스페리딘 라 caz으로 같은 흡수를 포함하는 동맥경화증, 고혈압, 간질환, 고혈당증의 예방 및 치료용 조성물</td>
<td>대한민국</td>
<td>출원</td>
<td>2001. 3. 8</td>
<td>209,145</td>
</tr>
<tr>
<td>특허</td>
<td>데코스플리탈 및 감귤류 과피 주출물고 포함하는 자극대사개선 및 혈압강하용 조성물</td>
<td>대한민국</td>
<td>출원</td>
<td>2001. 10. 30</td>
<td>314,477</td>
</tr>
<tr>
<td>특허</td>
<td>플라비노 에스테르 유도체 및 이를 포함하는 혈중 지질 농도 관련 질환의 예방 및 치료용 조성물</td>
<td>대한민국</td>
<td>출원</td>
<td>2002. 4. 17</td>
<td>2002-20850</td>
</tr>
<tr>
<td>특허</td>
<td>Citrus peel extract as inhibitor of ACAT, inhibitor of macrophage-lipid complex accumulation on the arterial wall and preventive or treating agent for hepatic diseases</td>
<td>일본</td>
<td>출원</td>
<td>2002. 7. 26</td>
<td>3,333,777</td>
</tr>
<tr>
<td>특허</td>
<td>Flavanone derivatives and composition for preventing or treating blood lipid level-related diseases comprising same</td>
<td>미국</td>
<td>출원</td>
<td>2002. 9. 14</td>
<td>6,455,577</td>
</tr>
<tr>
<td>특허</td>
<td>Health-improving spice composition</td>
<td>미국</td>
<td>출원</td>
<td>2002. 10. 15</td>
<td>6,465,019 B1</td>
</tr>
</tbody>
</table>
기술이전 조건

<table>
<thead>
<tr>
<th>이전형태</th>
<th>■ 유상</th>
<th>□무상</th>
<th>최저기술료</th>
<th>500,000 천원</th>
</tr>
</thead>
<tbody>
<tr>
<td>이전방식</td>
<td>□ 소유권이전</td>
<td>■ 전용실시권</td>
<td>□ 통상실시권</td>
<td>()</td>
</tr>
<tr>
<td></td>
<td>□ 협의결정</td>
<td>□ 기타</td>
<td></td>
<td></td>
</tr>
<tr>
<td>이전 소요기간</td>
<td>3 년</td>
<td>개월</td>
<td>실용화예상기간</td>
<td>2006 년도</td>
</tr>
<tr>
<td>기술이전시</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>실행요건</td>
<td>올해 8월부터 전장식품기술법이 발효됨에 따라 소규모 형태의 시제품을 이용한 사람에 대한 약호 및 독성시험 점검이 행해져야 함</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

기술의 개발단계 및 수준

[기술의 완성도] (각 개발 단계 (✓) 표시하여 주십시오)

| | ① 기초, 탐색연구단계 : 특정공용모델을 위한 고정한 신 지식을 얻거나 기술적 가능성을 탐색하는 단계
| | ✓ ② 응용연구단계 : 기술적 가능성의 실증, 잠재적 실용화 가능성을 입증 등 실험실적 확인 단계
| | ③ 개발연구단계 : Prototype의 제작, Pilot Plant Test 등을 행하는 단계
| | ④ 기업화 준비단계 : 기업화에 필요한 양산화 기술 및 주변 기술까지도 확보하는 단계
| | ⑤ 삼품화 완료단계 |

[기술의 수명주기] (각 개발 단계 (✓) 표시하여 주십시오)

| | ① 기술개발 경위기 : 기술의 잠재적 가능성을 잃는 단계
| | ② 기술설계기 : 기술개발에 성공했으나 아직 실용성, 경제성 등이 확실치 않은 단계
| | ③ 기술적용 시작기 : 최초의 기술개발국에서만 활용되고 있는 단계
| | ✓ ④ 기술적용 성장기 : 기술개발국 및 일부 산업국에서 활용되고 있는 단계
| | ⑤ 기술적용 성숙기 : 산업국사이에서 활발한 기술이전이 일어나며 기술의 표준화가 되는 단계
| | ⑥ 기술적용 쇠퇴기 : 산업국에서 개도국으로 기술이전이 활발하게 일어나고, 산업국에서는 기술의 가치가 저하되며, 개도국에서는 아직 시장의 가치가 높은 기술 |

[기술발전 과정상의 기술수준] (각 개발 단계 (✓) 표시하여 주십시오)

| | ① 외국기술의 모방단계 : 이미 외국에서 개발된 기술의 복제, reverse Eng.
| | ✓ ② 외국기술의 소화·흡수단계 : 국내시장구조나 특성에 적합하게 적용시킴
| | ③ 외국기술의 개선·개량단계 : 성능이나 가능을 개선시킴
| | ④ 신기술의 혁신·발명단계 : 국내 최초로 개발 |
본 기술과 관련하여 추가로 확보되었거나 개발중인 기술

기술개요

<table>
<thead>
<tr>
<th>기술명</th>
<th>비아오프라보노이드로부터 유래한 유용물질의 항항역학적/지질대사조절 기능성식품 소재화 기술</th>
</tr>
</thead>
<tbody>
<tr>
<td>개발단계</td>
<td>■ 연구개발 계획 □ 연구개발 중 □ 연구개발 완료</td>
</tr>
</tbody>
</table>

기술키요
비아오프라보노이드로부터 유래한 유용물질의 지질강화 및 항항역학적 작용을 입증하는 명백한 작용기작의 규명이 필요하며, 이는 유용물질의 in vivo 실험을 통해 열액 및 지질대사 관련 조작의 혈액, 간, 소장 등의 생화학적, 분자생물학적 분석이 필요하며, 한편 유용물질의 ADME를 통한 대사경로를 입증함과 동시에, 유용물질과 보조제료 성분조성비에 따른 기능성식품 제조기술을 확보하고, 마지막으로 사람에 대한 소규모 약효 및 독성 실험이 반드시 수행되어야 한다. 이 기술 개발을 통해 생물 소재의 경제적 고부가가치를 창출해 내고, 기능성 식품 산업의 활성화 및 국민 건강 증진에 기여할 수 있다.

기술을 도출한 과제현황

<table>
<thead>
<tr>
<th>과제관리번호</th>
</tr>
</thead>
<tbody>
<tr>
<td>과제명</td>
</tr>
<tr>
<td>사업명</td>
</tr>
<tr>
<td>세부사업명</td>
</tr>
<tr>
<td>연구기관</td>
</tr>
<tr>
<td>참여기관(기업)</td>
</tr>
<tr>
<td>종연구기관</td>
</tr>
<tr>
<td>종연구비</td>
</tr>
<tr>
<td>정부 : ()백만원</td>
</tr>
<tr>
<td>연구책임자</td>
</tr>
<tr>
<td>전화번호</td>
</tr>
</tbody>
</table>

연구개발 주요내용