거대 EST database에서 유용유전자를 발굴하는 functional genomics의 체계 구축

Establishment of functional genomics system for mining important genes from large EST database

2003. 1. 30

한국 생명공학연구원
제출문

한국생명공학연구원장 귀하

본 보고서를 “자유공모” 과제 (세부과제 “거대 EST database에서 유용유전자를 발굴 하는 functional genomics의 체계 구축”)의 기관고유사업보고서로 제출합니다.

연구부서명: 유전체연구부
중과제책임자:
세부과제책임자: 염영일
연구원: 서상범, 이동식, 최성봉,
정순철, 김동욱, 배현숙,
최도일, 김승호, 장영주,
한윤수, 김민곤, 노현수,
박경미, 김승준
요 약 문

I. 제 목
거대 EST database에서 유용유전자를 발굴하는 functional genomics의 체계 구축

II. 사업(연구개발)의 목적 및 필요성
거대 EST database가 공개된 여러 종들의 EST database의 비교 분석을 통하여 얻은 목적 형질에 특이한 후보 유용유전자들을 functional genomics의 기반 기술을 사용하여 확인하는 체계적 접근 및 심도 있는 연구가치가 있는 다수 유전자를 확보하고자 하였다. 기존 인간 유전체 기능연구사업단에서 발굴한 한국인 호발성 cancer, 위암(401종)과 간암(272종) 특이유전자중 transcription factor들과 coactivator등 유전자 발현 조절이나 histone modification에 관여하는 단백질들의 유전자, 뇌의 염증 및 신경세포의 기능 장애와 연관된 Microglia의 활성화에 관련이 있는 유전자, 중, Medicago, Arabidopsis의 EST database를 비교 분석하여 질소고정 공생관계의 생물 기관에 관련된 다양한 유전자, 늑의 초기 세포 발달에 특이적인 유전자에 관련된 EST database로부터 embryo 형성에 영향을 미칠 가능성이 있는 RNA 결합과 관련된 단백질을 암호화하는 유전자를 발굴하고자 하였다.

III. 사업(연구개발)의 내용 및 범위
전 세계적으로 활발하게 진행된 인간, 동물, 식물 등 다양한 종의 염기서열 해독은 이제 GenBank에 등록된 대량의 EST database를 이용한 유용유전자를 찾아내고 그 기능을 분석하기 위한 노력으로 이어지고 있다.

한국인 호발성 암에 관여하는 유전자를 찾기 위하여 위암세포주(SNU-16)를 chromatin remodeling에 관여하는 HDAC inhibitor, TSA (trichostatin A)와 methyltransferase inhibitor, AdoHcy (adenosine homocysteine)등의 drug으로 처리 한 후에 RNA를 분리하여 Korean Unigene Library of KRIBB (http://21cgenome. kribb.re.kr /frontier)으로 부터 분리된 13,376 cDNA clones 의 DNA chip을 이용하여 microarray를 수행하였다. DNA chip의 image analysis 결과 TSA 와 AdoHcy 처리 시
각각 over-expression 과 down-expression된 유전자들을 발굴하였다. 또한 RT-PCR을 이용하여 발굴된 유전자들 중 부분적인 유전자들에 대한 microarray 결과를 확인하였다.

뇌의 염증 및 신경세포의 기능 장애를 일으키는 것으로 생각되어 지는 Microglia의 활성화에 관련이 예상되는 특이적으로 발현이 증가 또는 감소되는 유전자 발굴을 위하여 미국 NCBI의 EST database 및 인간 유전자 연구 사업단의 DNA chip을 이용하여 Microglia의 활성화 관련 유전자 정보를 세계적으로 구축하고 RT-PCR로 발현여부를 확인하였다.

통 EST databases를 mining 하여 총에서 결로고정 공동관계 특이 유전자를 얻었고, 이들의 발현을 실험적으로 결정하였다. Local databases의 구축과 expression profiles에 관한 cluster analysis는 Python language를 사용하여 행해졌다. cDNAs의 조직 특이성 분석을 위하여 multiplex reverse transcriptase-polymerase chain reaction (RT-PCR)이 사용되었다. 현재 EST clones의 확보는 이려우므로 유용유전자에 효율적인 확인을 위한 뿌리·뿌리혹 cDNA library를 제작하였고, 이 library에서 EST를 생산하였다.

비 초기배 행성에 관련된 cDNA 클론을 확보하기 위하여, 초기배 cDNA library를 확보하고, 5' 부위의 염기서열을 확인하여, 기존의 NCBI database 및 생명연에 설치되어 있는 전체 자료너가 되는 local database(http://www.pdrc.re.kr/blast/rice.html)와 비교하여 full-length 여부 및 기존에 알려진 유전자와 비교하였다. 이 중 발달과정에서 중요한 단백질을 암호화하는 클론을 확보하기 위하여 위의 library를 대상으로 PCR을 수행하여 5종의 유전자에 대하여 그 기능을 분석하고자 하였다.

IV. 사업수행(연구개발)결과

첫째, SNU-16 위암 세포주에 TSA를 처리 했을 때 560 개의 유전자가 over-expression 되었고 159 종류의 유전자가 down-regulation 되었다. AdoHcy를 처리한 경우에는 269 개의 유전자가 over-expression 되었고 213 개의 유전자가 down-regulation 되었다. 이들 중 몇 개는 RT-PCR로 발현의 차이가 재확인되었다. 둘째, 115개의 Microglia의 활성화 기전에 관여하는 후보 유용유전자를 DNA chip 및 EST database를 이용하여 확보하고, 그 중 RT-PCR로 확인한 바에 의하면 25종의 유전자에 특이적으로 증가 또는 감소를 보였다. 셋째, EST database의 분석으로 얻은 결로고정 관련 EST clusters의 Multiplex RT-PCR 분석에 의하면 이들 중 57 clusters는
뿌리혹 특이성 발현을 보였고, 이들의 BLASTX search 결과는 이들 중 상당수는 이미 잘 알려진 유전자이나 최소 30개 이상은 database의 hypothetical proteins에 유사성을 보여주거나 유사한 염기서열이 없었다. 뒷세, 염기서열분석을 통하여 배 발생 관련 200종의 unigene 클론을 확보하였고, 이중에서 RNA와 결합할 수 있는 단백질을 암호화하는 3종의 클론을 확보하였고, 세포증식과 관련된 2종의 full-length 클론에 대한 RT-PCR을 통하여 확보하여 발현부위 및 기능을 살펴보았다. 본 결과는 한국인 호발성 알, Microglia의 활성화, 초기배 발생, 질소고정 공생관계와 같은 중요한 생명 현상의 기능유전체적 연구를 위한 기초 data를 제공하여 궁극적으로 새로운 개념의 진단 및 치료제의 개발, 신료 또는 개발로 이어질 것이다.

V. 사업수행(연구개발)결과의 활용계획

거대 EST database의 분석으로 얻은 암발생, Microglia의 활성화, 질소고정, 배발생 관련 cDNA 클론들 중 기능이 밝혀지지 않은 클론들은 계속적인 유전자 기능 구명의 재료로 사용될 것이다. 본 결과의 결과들은 앞으로 주요 국가 연구개발사업에 참여하는데 기초자료로 사용될 것이고, 연구 홍보가 일치하는 국내 연구자들에게 클론의 분양도 가능할 것이다. 활용계획이 가시화되고 있는 일례는 질소고정과 백 배발생 관련 유전자에 발굴 결과는 2002년 국책 유전자원자원활용사업 내 석물유전체연구소재은행 과제에 참여하는 근거를 제공하였고, 이과계 중 전장 cDNA의 발굴은 소재은행과제에서 계속 지원될 예정이다.
목

차

제 1 장 서론 ... 1

제 2 장 국내외 기술개발 현황 ... 2

가. 국내 기술개발 현황 .. 2

나. 국제 기술개발 현황 .. 2

제 3 장 사업(연구개발) 수행 내용 및 결과 .. 4

가. 연구개발 수행 내용 .. 4

나. 연구결과 .. 6

제 4 장 사업(연구개발) 목표 달성도 및 대의거여도 ... 21

제 5 장 연구개발결과의 활용계획 .. 22

제 6 장 참고문헌 .. 23
제 1 장 서론

고등생물의 핵 DNA 중 실제로 단백질을 암호화하는 부분은 일부에 불과하며, 단백질을 암호화하는 유전자의 부위도 대다수의 경우 intron에 의해 단절되어 있다. 그래서 단백질을 암호화하는 염기서열들을 효과적으로 연구하고자 하는 노력이 있어 왔는데, cDNA의 양쪽 끝의 염기서열을 얻는 EST (single-pass cDNA sequences 또는 Expressed Sequence Tags)의 획득은 이러한 노력의 대표적인 예이다. EST data는 일반적으로 조직 특이적, 기능 특이적 조건에서 만든 cDNA library 또는 여러 가지 조건으로부터 얻은 cDNA를 합친 cDNA library에서 무작위적으로 선택한 clone을 sequencing함에 의해 생산되어 진다. 그러므로 이론적으로 종분한 양의 EST가 database에 축적되면 database의 분석만으로도 특이적 유용유전자를 찾는 것이 가능해질 것이다.

적은 양의 EST data만 이용 가능한 시점에서 원하는 유용유전자를 통계적 분석에 의존하여 확보하려는 노력은 쉽게 수포로 돌아가기 쉽다. 이 문제에 대한 보완적인 수단으로 cDNA-AFLP, subtractive hybridization, microarray로 만든 DNA chip을 사용한 differential hybridization 방법 등을 사용한 연구가 진행되고 있으나, 이들 방식들은 많은 경비와 시간을 요구하고 있다. 하지만 일정 수준 이상의 EST data가 축적되면 EST database의 분석만으로도 조직 특이적이거나 기능 특이적인 유전자의 발굴이 가능하다. 이러한 관점에서 본 과제에서는 기존에 10만개 이상의 EST가 보고된 종의 database의 분석을 통하여 얻은 암 발생, 뇌의 면역계, 기소교정 및 초기 배아 발달에 관여하는 특이적 EST가 실제 특이성을 보이는지를 여러 가지 간단한 분자기능을 통하여 검정하여 유용유전자를 발굴하기 위한 방안을 모색해 보고자 하였다.
제 2 장 국내·외 기술개발 현황

가. 국외 기술개발 현황

최근의 보고서에 의하면 2006년까지 microarray 시장은 $681 million에 이르 것으로 예측되고 인간의 전체 유전자 1개의 chip에 올리는 것이 귀 기능하리라 예견된다. 현재는 75%의 연구가 broad gene expression profiling에 집중되어있고 $300 million 시장의 80%를 Affymetrix사에서 차지하고 있다. 그 외에 Agilent, Incyte Genomics, Takara 등 여러 회사들이 그 뒤를 따르고 있다. 질소고정과 관련한 EST의 생산은 미국에서 활발히 진행되어 극과 질소고정 모델 식물인 Medicago의 공개된 EST의 수는 식물에서 가장 많은 실정이다 (Shoemaker et al., 2002; Fedorova et al., 2002).

나. 국내 기술개발 현황

1. 산업계 동향: LGCI, 삼성중전기술연구조사(마크로젠) 등 민간부문에서 국내수요에 맞는 DNA chip을 개발, 보급중이거나 활발히 개발 중에 있다. 국내의 DNA chip 관련 기술수준과 규모는 아직 선진국에 비해 많이 뒤처지는 상황이다. 그러나 최근 들어 비교적 젤 높은 고정적 cDNA chip의 양산이 이루어지고 있고, oligo chip의 생산, DNA chip 시험분석기술의 보급 확대, 관련 비용 인하 등에 따라 국내에서도 chip기술의 보편화가 급속히 이루어질 것으로 예상된다.

2. 학계 동향: 초기에 서울대, 한양대에서 Pat Brown 방식으로 chip을 개발하였는데 특히 한국생명과학연구원은 한양대와 공동으로 10K human cDNA chip을 개발하였다. 최근에는 여러 대학에서 특정 질병이나 세포 생물학적 mechanism 연구를 위한 소형 DNA chip을 실험용 단위로 개발하여 실험에 사용하고있다.

의 EST 연구는 작물 유전체연구단의 지원으로 서울대와 숙명여대에서 작은 규모의 연구가 수행되고 있다. 영지대학교의 비 연구그룹은 최근 3K chip을 만들어 이용 중에 있으나, 보다 많은 수의
클론 확보를 위한 조직별 EST 클론의 분석이 필요한 설정이다.

③ 연구계 동향 : 한국생명공학연구원 인간유전자기능연구사업단이나 국립보건원의 유전자연구센터 등을 중심으로한 공공부문에서 인간, 마우스등 여러종류의 chip 제작과 활용연구가 진행되고 있다. 월 계열 염기서열 해독에 농촌진흥청이 참여한 바 있다. 식물의 EST 생산은 한국생명공학연구원에서 고추의 EST를 30,000 점 이상 생산하여 microarray로 분석하고 있다.
제 3 장 사업(연구개발) 수행 내용 및 결과

가. 연구개발 수행 내용

○ 위암에서 microarray를 이용한 chromatin remodeling 관련 유전자 발굴

인간 위암세포주 (SNU-16)를 chromatin remodeling에 관여하는 HDAC inhibitor, TSA (trichostatin A)와 methyltransferase inhibitor, AdoHcy (adenosine homocysteine) 등의 drug으로 처리 한 후에 RNA를 분리하여 Korean Unigene Library of KIRIBB (http://21cgenome. kribb.re.kr /frontier)로부터 분리된 13,376 cDNA clones의 DNA chip을 이용하여 microarray를 수행하였다. ScanArray 5000 (Gsi Lumonics)와 GenePix 4.0 software (Axon)을 이용하여 image analysis를 하였고 hierarchical clustering analysis를 위해 Cluster와 TreeView program을 이용하여 분석하였고 결과로 TSA와 AdoHcy 처리시 각각 over-expression 과 down-expression된 유전자들을 발굴하였다. 또한 RT-PCR을 이용하여 발굴된 유전자들 중 부분적인 유전자들에 대한 microarray 결과를 확인하였다.

○ Microglia의 활성화에 관련이 있는 유전자의 탐색

뇌의 염증 및 신경세포의 기능 장애를 일으키는 것으로 생각되어지는 Microglia의 활성화에 관련이 예상되는 특이적으로 발현이 증가 또는 감소되는 유전자 발굴을 위해 미국 NCBI의 EST database 및 인간유전자연구사업단의 DNA chip을 이용하여 Microglia의 활성화 관련 유전자 정보를 체계적으로 구축하고 RT-PCR로 발현여부를 확인하였다.

○ 콩에서 질소고령 특이유전자 분리

조직 및 기능 특이적으로 발현되는 유전자를 얻기 위한 다양한 방법이 지난 10여년에 동안 개발되어 왔다. 최근에 개발되어 성공적으로 응용되는 두가지 방법은 suppression subtractive hybridization과 cDNA-AFLP이다. 하지만 public databases의 ESTs의 기하급수적 증가는 in silico 분석만으로 다수의 특이적으로 발현되는 유전자를 얻기 위한 또 다른 기회를 제공한다. 본 연구에서는 콩에서 질소고령 특이 유전자를 얻기 위하여 콩 EST databases를 비교 분석하여 후보 유전자 database를 만들고 실험적으로 이들 EST의 특이성을 검정하였다. Local databases의 구축과 분석을 Python language를 사용하여 Fig. 1에서 볼 수 있는 바와 같이 수행하였다.
Fig. 1. Flow chart summarizing cluster analysis with respect to expression profiles. Construction and analysis of local databases were conducted using Python language. The extracted ESTs were clustered using Icatool. At the time of analysis as of February 12, 2002, a total of 241,930 ESTs had been deposited in the public EST Others Database. Numbers of ESTs and clusters are shown in green.

cDNAs의 조직특이 분석을 위하여, multiplex reverse transcriptase–polymerase chain reaction (RT–PCR) protocol(Crawford et al., 2002)을 housekeeping gene soybean actin과 연결하여 후보 N-specific genes의 전사체를 찾기 위하여 사용하였다. 동 actin의 primers로는 sense 5’-TGGACTCTGGTGATGGTGTC와 antisense 5’-CCTCCAAATCCAAACACT GTA가 사용되었다. 전체 두께 20 μl 내에 actin primer 각각 100 nM, 각 EST cluster primer 200 nM, 각 dNTP 200 μM, 1U Taq polymerase, 그리고 10X buffer를 정가하였다. Thermocycler의 PCR profile은 94°C에서 30s, 47°C에서 30s, 그리고 72°C에서 30s를 30 cycles 반복하였다. 반응 용액 10 μl 을 ethidium bromide를 함유한 agarose gels상에서 전기영동에 의해 PCR products를 분리하기 위해 사용되었다. EST clone의 도입이 현재로서는 불가능한 상황이므로 홍미

- 5 -
로운 EST의 cDNA clone을 확보하기 위하여 측근 뿌리혹 조직에서 추출한 mRNA를 사용하여 cDNA library를 lambda ZAP vector를 사용하여 제작하였다.

○ 초기배의 EST클론 확보 및 기능분석
 - 초기배의 cDNA EST

수분 5일 후 체취한 초기 embryo의 RNA를 대상으로 λ ACT2 (Clontech)에 제조된 cDNA library를 pACT로 in vivo excision하고, insert의 5' upstream부위에 있는
sequence (5' - TCTATTGCATGATGAAGATAC)을 primer로 하여 염기서열을 분석하였다.
- Database와 염기서열비교

농염기서열과 비교하여 unigene 여부 및 유사한 유전자의 존재를 확인하였다.
- 유용유전자의 선별 및 기능조사

EST로부터 3종의 RNA 결합단백질 및 2종의 세포주기관련유전자를 선별하여, 이들
에 대한 전장 cDNA를 확보하기 위하여 우선 partial 클론의 5' 부위에 있는 염기서열과
vector의 염기서열을 대상으로 PCR을 수행한 후, 전장클론을 얻기 위하여 cDNA의 5'과
3'의 염기서열을 이용하여 PCR을 재수행하였다. 발현조직을 살펴보기 위하여 민, 줄기,
뿌리, 종자의 전체 RNA를 대상으로 RT-PCR을 수행하였다. 이 과정에서 한종의 유전
자는 E. coli에서 단백질을 발현시켜 항체를 생산하고, 각 조직에서 추출한 수용성단백
질을 이용하여 immunoblot을 수행하였고, 기능을 조사하기 위하여 분열효모주
(Forsburg et al., 1997)를 대상으로 complementation 실험을 수행하였다.

나. 연구결과

○ 위암에서 microarray를 이용한 chromatin remodeling 관련 유전자 발굴
 - 인간 위암세포 (SNU-16)를 chromatin remodeling에 관여하는 HDAC inhibitor,
TSA (trichostatin A)와 methyltransferase inhibitor, AdoHcy (adenosine homocysteine)
등의 drug으로 처리한 후에 RNA를 분리하여 Korean Unigene Library of KRIIBB
(http://21cgenome. kriib.re.kr /frontier)으로부터 분리된 13,376 cDNA clones의 DNA
chip을 이용하여 microarray를 수행하였다. ScanArray 5000 (Gsi Luminonics) 와
GenePix 4.0 software (Axon)을 이용하여 image analysis를 하였고 hierarchical
clustering analysis를 위해 Cluster와 TreeView program을 이용하여 분석하였고 (Fig. 2) 결과로 TSA와 AdoHcy 처리시 각각 over-expression과 down-expression된 유전자들을 발굴하였다. 또한 RT-PCR을 이용하여 발굴된 유전자들 중 부분적인 유전자들에 대한 microarray 결과를 확인하였다 (van de Vijver et al., 2002; Schmidt U et al., 2002).

![Hierarchical clustering of a gastric cancer cell line treated with TSA](image1)

![Hierarchical clustering of a gastric cancer cell line treated with AdoHcy](image2)

Fig. 2. Hierarchical clustering of a gastric cancer cell line treated with TSA and AdoHcy

- cDNA microarray 및 clustering 분석결과 SNU-16 위암 세포주에 HDAC inhibitor TSA를 처리했을 때 560 개의 유전자가 over-expression 되었고 159 종류의 유전자가 down-regulation 되었다. Methyltransferase inhibitor AdoHcy를 처리한 경우에는 269 개의 유전자가 over-expression 되었고 213 개의 유전자가 down-regulation 되었는데 발현양의 변화가 큰 유전자들을 분류하였다 (Table 1 & 2). Cyclin dependent kinase inhibitor 1A (p21), hypoxia inducible factor (HIF-1alpha), GATA binding protein3 등이 TSA 처리시 발현이 증가되었고 polo-like kinase, cyclin B2등이 발현량이 감소 하였다. AdoHcy를 처리했을 경우에는 MAP kinase activating death domain (MADD), cytochrome P450 isoform등이 발현이 증가하였고 cyclophilin B등이 발현이 감소된 것을 RT-PCR 방법으로 확인하였다 (Fig. 3)(Tseng et al, 2002; Omoto et al, 2002). 그 외에도 발굴된 유전자들 중에는 cancer를 포함한 질환들에 중요한 역할을 하는 것으로 알려진 주요 signal transduction pathway에 관여하는 유전자들이 발굴되었다.
Table 1. Genes that were up and down regulated with TSA treatment.

Genes that were up-regulated with TSA treatment

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Unigene ID</th>
<th>Symbol</th>
<th>Locus</th>
<th>Avg of log2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCAAT/enhancer binding protein (C/EBP) alpha</td>
<td>250082</td>
<td>ST6</td>
<td>204.123-213.13</td>
<td>1.83</td>
</tr>
<tr>
<td>PAX-5 (Pax-5)</td>
<td>71767</td>
<td>PLK</td>
<td>18.112</td>
<td>1.83</td>
</tr>
<tr>
<td>CDC20 (cell division cycle 20, S. cerevisiae, homolog)</td>
<td>20506</td>
<td>CDC20</td>
<td>10.34.1</td>
<td>1.57</td>
</tr>
<tr>
<td>Cyclin D2</td>
<td>394969</td>
<td>CCND2</td>
<td>15.212.2</td>
<td>1.48</td>
</tr>
<tr>
<td>General transcription factor IIB, polypeptide 1 (TFII B subunit)</td>
<td>88257</td>
<td>STF2B.1</td>
<td>18.133</td>
<td>1.25</td>
</tr>
<tr>
<td>Microtubule-associated protein 4</td>
<td>239098</td>
<td>MAP4</td>
<td>26.21</td>
<td>1.18</td>
</tr>
<tr>
<td>Myosin/Myosin homologous protein</td>
<td>290877</td>
<td>MILB</td>
<td>7.33-8.36</td>
<td>1.16</td>
</tr>
<tr>
<td>CTCF (CCCTC-binding factor)</td>
<td>18522</td>
<td>OFBRA2</td>
<td>Chr, 9</td>
<td>1.14</td>
</tr>
<tr>
<td>Cdc20 (cell division cycle 20, S. cerevisiae, homolog)</td>
<td>81163</td>
<td>PSME2</td>
<td>7.22.1, 1.22</td>
<td>0.86</td>
</tr>
<tr>
<td>Antibodies of monoclonal antibody Ki-67</td>
<td>89976</td>
<td>MIB1</td>
<td>10.25-13</td>
<td>1.05</td>
</tr>
<tr>
<td>Hypothetical protein from clone (ABF2)</td>
<td>20556</td>
<td>FDNB</td>
<td>Chr, 2</td>
<td>1.07</td>
</tr>
<tr>
<td>Nuclear DNA replication gene C (KIAA0104)</td>
<td>35315</td>
<td>NCLC</td>
<td>1.02</td>
<td></td>
</tr>
<tr>
<td>Senescence/transforming protein 6</td>
<td>250262</td>
<td>STK6</td>
<td>204.123-213.13</td>
<td>0.95</td>
</tr>
<tr>
<td>Nuclear pore complex protein</td>
<td>236204</td>
<td>NUP117</td>
<td>Chr, 12</td>
<td>1.07</td>
</tr>
<tr>
<td>Splicing factor, arginine/serine-rich 11</td>
<td>31482</td>
<td>SFRS11</td>
<td>1.56</td>
<td></td>
</tr>
<tr>
<td>Coagulation factor XII (Hageman factor)</td>
<td>32261</td>
<td>F12</td>
<td>5.33-4.93</td>
<td>1.02</td>
</tr>
<tr>
<td>Small nuclear ribonucleoprotein protein, polypeptide A</td>
<td>39536</td>
<td>SNRP1</td>
<td>15.26.3</td>
<td>1.61</td>
</tr>
</tbody>
</table>

Genes that were down-regulated with TSA treatment

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Unigene ID</th>
<th>Symbol</th>
<th>Locus</th>
<th>Avg of log2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serine/Threonine kinase 5</td>
<td>250082</td>
<td>STK6</td>
<td>204.123-213.13</td>
<td>1.83</td>
</tr>
<tr>
<td>PKC (Protein kinase C)</td>
<td>71767</td>
<td>PLK</td>
<td>18.112</td>
<td>1.83</td>
</tr>
<tr>
<td>CDC20 (cell division cycle 20, S. cerevisiae, homolog)</td>
<td>20506</td>
<td>CDC20</td>
<td>10.34.1</td>
<td>1.57</td>
</tr>
<tr>
<td>Cyclin D2</td>
<td>394969</td>
<td>CCND2</td>
<td>15.212.2</td>
<td>1.48</td>
</tr>
<tr>
<td>General transcription factor IIB, polypeptide 1 (TFII B subunit)</td>
<td>88257</td>
<td>STF2B.1</td>
<td>18.133</td>
<td>1.25</td>
</tr>
<tr>
<td>Microtubule-associated protein 4</td>
<td>239098</td>
<td>MAP4</td>
<td>26.21</td>
<td>1.18</td>
</tr>
<tr>
<td>Myosin/Myosin homologous protein</td>
<td>290877</td>
<td>MILB</td>
<td>7.33-8.36</td>
<td>1.16</td>
</tr>
<tr>
<td>CTCF (CCCTC-binding factor)</td>
<td>18522</td>
<td>OFBRA2</td>
<td>Chr, 9</td>
<td>1.14</td>
</tr>
<tr>
<td>Cdc20 (cell division cycle 20, S. cerevisiae, homolog)</td>
<td>81163</td>
<td>PSME2</td>
<td>7.22.1, 1.22</td>
<td>0.86</td>
</tr>
<tr>
<td>Antibodies of monoclonal antibody Ki-67</td>
<td>89976</td>
<td>MIB1</td>
<td>10.25-13</td>
<td>1.05</td>
</tr>
<tr>
<td>Hypothetical protein from clone (ABF2)</td>
<td>20556</td>
<td>FDNB</td>
<td>Chr, 2</td>
<td>1.07</td>
</tr>
<tr>
<td>Nuclear DNA replication gene C (KIAA0104)</td>
<td>35315</td>
<td>NCLC</td>
<td>1.02</td>
<td></td>
</tr>
<tr>
<td>Senescence/transforming protein 6</td>
<td>250262</td>
<td>STK6</td>
<td>204.123-213.13</td>
<td>0.95</td>
</tr>
<tr>
<td>Nuclear pore complex protein</td>
<td>236204</td>
<td>NUP117</td>
<td>Chr, 12</td>
<td>1.07</td>
</tr>
<tr>
<td>Splicing factor, arginine/serine-rich 11</td>
<td>31482</td>
<td>SFRS11</td>
<td>1.56</td>
<td></td>
</tr>
<tr>
<td>Coagulation factor XII (Hageman factor)</td>
<td>32261</td>
<td>F12</td>
<td>5.33-4.93</td>
<td>1.02</td>
</tr>
<tr>
<td>Small nuclear ribonucleoprotein protein, polypeptide A</td>
<td>39536</td>
<td>SNRP1</td>
<td>15.26.3</td>
<td>1.61</td>
</tr>
</tbody>
</table>
Table 2. Genes that were up and down regulated with AdoHcy treatment.

Genes that were up-regulated with AdoHcy treatment

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Unigene ID</th>
<th>Symbol</th>
<th>Locus</th>
<th>Avg of log2</th>
</tr>
</thead>
<tbody>
<tr>
<td>E74-like factor 3 (lets domain transcription factor, epithelial-specific)</td>
<td>Ha.209526</td>
<td>ELF3</td>
<td>1q21.2-q21.33</td>
<td>1.57</td>
</tr>
<tr>
<td>Nuclear receptor subfamily 2, group C, member 1</td>
<td>Ha.103001</td>
<td>NR2C1</td>
<td>1q21.2-q21.33</td>
<td>1.42</td>
</tr>
<tr>
<td>MAP kinase activating death domain</td>
<td>Ha.28548</td>
<td>MAOD</td>
<td>1p11.2</td>
<td>1.45</td>
</tr>
<tr>
<td>Protease, a, clone 23 (fetalin)</td>
<td>Ha.70633</td>
<td>PRSS2</td>
<td>Chr 16</td>
<td>1.45</td>
</tr>
<tr>
<td>NADH dehydrogenase (ubiquinone) flavoprotein 1 (SldID)</td>
<td>Ha.7744</td>
<td>NDUFV1</td>
<td>11q13</td>
<td>1.31</td>
</tr>
<tr>
<td>Dynamin heavy chain, cytoplasmic</td>
<td>Ha.7778</td>
<td>DYNCH</td>
<td>14q23.3-ter</td>
<td>1.35</td>
</tr>
<tr>
<td>S17-deacetylase/cyclin kinase</td>
<td>Ha.67501</td>
<td>DCTN1</td>
<td>17q25.3</td>
<td>1.09</td>
</tr>
<tr>
<td>Spectrin, alpha, non-erythrocytic 1 (alpha-fodrin)</td>
<td>Ha.77106</td>
<td>SPTAN1</td>
<td>9q32-q34</td>
<td>1.21</td>
</tr>
<tr>
<td>Phosphatidylinositol-4-phosphate 5-kinase, type II, beta</td>
<td>Ha.6356</td>
<td>PIP5K2B</td>
<td>1q21.2</td>
<td>1.25</td>
</tr>
<tr>
<td>p99 protein, G-2 and S-phase expressed</td>
<td>Ha.102552</td>
<td>GH2</td>
<td>Chr 20</td>
<td>1.27</td>
</tr>
<tr>
<td>Human protein OS-9 precursor</td>
<td>Ha.76526</td>
<td>OS-9</td>
<td>Chr 12</td>
<td>1.1</td>
</tr>
<tr>
<td>Cytochrome P450 ISO form 12</td>
<td>Ha.100670</td>
<td>CYP12A1</td>
<td>Chr 19</td>
<td>1.14</td>
</tr>
<tr>
<td>GTP-nucleoside pyrophosphohydrolase B</td>
<td>Ha.23079</td>
<td>GMPPB</td>
<td>3p13.3</td>
<td>1.02</td>
</tr>
<tr>
<td>Inhibitor of DNA binding 3, dominant negative helix-loop-helix protein</td>
<td>Ha.67884</td>
<td>ID3</td>
<td>1p36.13-p36.12</td>
<td>0.98</td>
</tr>
<tr>
<td>Glutaredoxin protein (GXRx)</td>
<td>Ha.29116</td>
<td>GSRN1</td>
<td>LOCS5117</td>
<td>1.13</td>
</tr>
<tr>
<td>Type 1 transmembrane receptor (selurin-related protein) (PSK-1)</td>
<td>Ha.6314</td>
<td>PSK-1</td>
<td></td>
<td>1.04</td>
</tr>
<tr>
<td>Tissue inhibitor of metalloproteinase 1 (collagenase inhibitor)</td>
<td>Ha.5951</td>
<td>TIMP1</td>
<td>Xp11-22</td>
<td>1.02</td>
</tr>
<tr>
<td>Ubiquitin C</td>
<td>Ha.185204</td>
<td>UBC</td>
<td>12q24.3</td>
<td>1.02</td>
</tr>
<tr>
<td>Solute carrier family 4, (erythrocyte membrane protein band 3-like 1)</td>
<td>Ha.20140</td>
<td>SLCA4</td>
<td>7q34.36</td>
<td>1.11</td>
</tr>
<tr>
<td>Merocaprovirus sulfotransferase</td>
<td>Ha.74397</td>
<td>MPST</td>
<td>2q11.2-q12</td>
<td>0.9</td>
</tr>
<tr>
<td>Phosphatase epsilon kinase (PHWE)</td>
<td>Ha.34657</td>
<td>PHWE</td>
<td>Chr 18</td>
<td>1.12</td>
</tr>
</tbody>
</table>

Genes that were down-regulated with AdoHcy treatment

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Unigene ID</th>
<th>Symbol</th>
<th>Locus</th>
<th>Avg of log2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calmodulin 3 (phosphorylation kinase, delta)</td>
<td>Ha.284504</td>
<td>CALM3</td>
<td>19q12.2-q13.3</td>
<td>1.32</td>
</tr>
<tr>
<td>Bloom syndrome histidine kinase A</td>
<td>Ha.76943</td>
<td>BLMH</td>
<td>17q11.2</td>
<td>1.4</td>
</tr>
<tr>
<td>Cystathionine B (cystathionine synthetase B)</td>
<td>Ha.859</td>
<td>PPB</td>
<td>15q21-q22</td>
<td>0.99</td>
</tr>
<tr>
<td>Replication initiation region protein (600kD)</td>
<td>Ha.99693</td>
<td>RPI8</td>
<td>16q5</td>
<td>1.01</td>
</tr>
<tr>
<td>ATP-binding cassette, subfamily C</td>
<td>Ha.336500</td>
<td>ABCC11</td>
<td>16q22.1</td>
<td>1.25</td>
</tr>
<tr>
<td>Anti-oxidant protein 2 (DNA-binding protein 5)</td>
<td>Ha.126</td>
<td>AOP2</td>
<td>1q23.3</td>
<td>1.08</td>
</tr>
<tr>
<td>Fos structure-specific antidioxygenase 1</td>
<td>Ha.6742</td>
<td>FOS1</td>
<td>11q12</td>
<td>0.94</td>
</tr>
<tr>
<td>S 20950 DNA-binding protein 5</td>
<td>Ha.42758</td>
<td>HSPOC1</td>
<td>Chr 5</td>
<td>0.86</td>
</tr>
<tr>
<td>B cell CL1/Lymphocyte 10</td>
<td>Ha.192523</td>
<td>BCL10</td>
<td>1p22</td>
<td>0.82</td>
</tr>
<tr>
<td>Rhombomere phosphatase homolog</td>
<td>Ha.79996</td>
<td>RPH1</td>
<td>p11.1</td>
<td>0.96</td>
</tr>
<tr>
<td>Transition-associated protein beta</td>
<td>Ha.74564</td>
<td>SSR2</td>
<td>1q21-q23</td>
<td>1.13</td>
</tr>
<tr>
<td>Nucleoporin 160kD</td>
<td>Ha.22359</td>
<td>NUP160</td>
<td>Chr 11</td>
<td>0.88</td>
</tr>
<tr>
<td>Specific, alpha, non-erythrocytic 1 (alpha-fodrin)</td>
<td>Ha.77569</td>
<td>SPTAN1</td>
<td>9q32-q34</td>
<td>0.78</td>
</tr>
<tr>
<td>Heat shock protein 75</td>
<td>Ha.183366</td>
<td>TRAP1</td>
<td>16q12.3</td>
<td>0.67</td>
</tr>
<tr>
<td>NDH protein 2</td>
<td>Ha.15667</td>
<td>NDH2</td>
<td>11p14</td>
<td>0.85</td>
</tr>
<tr>
<td>Techon factor 3 (intestinal)</td>
<td>Ha.82561</td>
<td>TFF3</td>
<td>2q35.2</td>
<td>0.92</td>
</tr>
<tr>
<td>Dickkopf (Xenopus laevis) homolog 1</td>
<td>Ha.40427</td>
<td>DKK1</td>
<td>10q11.2</td>
<td>0.83</td>
</tr>
<tr>
<td>Similar to melalin, collagen, connective tissue protein 1</td>
<td>Ha.5230</td>
<td>FLJ25659</td>
<td>Chr 1</td>
<td>0.7</td>
</tr>
<tr>
<td>Farne-specific diaphanous synthase</td>
<td>Ha.77393</td>
<td>FRPS</td>
<td>1q21.2</td>
<td>0.72</td>
</tr>
<tr>
<td>Transcription inhibition factor TFIIH ISG60 subunit</td>
<td>Ha.236651</td>
<td>TAFII-155</td>
<td>Chr 7</td>
<td>0.54</td>
</tr>
<tr>
<td>G6Pase, subunit 1</td>
<td>Ha.3764</td>
<td>GUK1</td>
<td>1q21-q41</td>
<td>0.72</td>
</tr>
<tr>
<td>Signal recognition particle 90kD</td>
<td>Ha.75975</td>
<td>SRRP1</td>
<td>tfq1</td>
<td>0.84</td>
</tr>
</tbody>
</table>
RT-PCR analysis of gene expression data

A) TSA treated-up

<table>
<thead>
<tr>
<th>Gene</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>p21ços</td>
<td>+</td>
</tr>
<tr>
<td>HIF-1a</td>
<td>—</td>
</tr>
<tr>
<td>GATA3</td>
<td>—</td>
</tr>
</tbody>
</table>

B) TSA treated-down

<table>
<thead>
<tr>
<th>Gene</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polo-like kinase</td>
<td>+</td>
</tr>
<tr>
<td>Cyclin B2</td>
<td>—</td>
</tr>
</tbody>
</table>

C) AdoHoy treated-up

<table>
<thead>
<tr>
<th>Gene</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>MADD</td>
<td>+</td>
</tr>
<tr>
<td>p450</td>
<td>—</td>
</tr>
</tbody>
</table>

D) AdoHoy treated-down

<table>
<thead>
<tr>
<th>Gene</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclophilin B</td>
<td>+</td>
</tr>
</tbody>
</table>

Fig. 3. RT-PCR analysis of gene expression data.

○ Microglia(뇌의 면역계를 담당)의 활성화에 관련 유전자 발현

- 미국의 NCBI와 한국 유전자 정보센터의 도움으로 처음 inflammation에 관련 및
 예상되는 유전자 200여개의 유전자 중 115개의 Microglia의 활성화 기전에 관여 될
 것으로 예상되는 후보 유전자들을 아래 Fig. 4. 과 같이 분류별로 분류하여 현재까지
 38개의 유전자에 대한 RT-PCR로 확인한 바 6개의 유전자가 beta-amyloid을 500nM로
 처리한 후 4시간의 경과 후 발현에 변화를 보였다. 이 결과는 현재까지
 neuroinflammation에 관여 되어 있다고 보고 된 바가 없다. 계속 나머지 77유전자에
β-amyloid-induced Microglia activation related gene

<table>
<thead>
<tr>
<th>Class</th>
<th>Candidate Gene</th>
<th>Confirmed gene by RT-PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflammatory response</td>
<td>15</td>
<td>1/5 (Mps1) ↑</td>
</tr>
<tr>
<td>Previously known ARE-mRNAs</td>
<td>25</td>
<td>1/8 (Interleukin-4) ↓</td>
</tr>
<tr>
<td>Oxidative stress response</td>
<td>38</td>
<td>1/4 (Gadd153) ↑</td>
</tr>
<tr>
<td>Protein degradation</td>
<td>4</td>
<td>1/4 (Macropain subunit zeta) ↓</td>
</tr>
<tr>
<td>Signal transduction</td>
<td>28</td>
<td>0/12</td>
</tr>
<tr>
<td>Cell adhesion</td>
<td>2</td>
<td>1/2 (moesin) ↑</td>
</tr>
<tr>
<td>Transcription regulation</td>
<td>3</td>
<td>1/3 (H8 tumor expression-enhanced gene) ↑</td>
</tr>
</tbody>
</table>

Fig. 4. Genes that were up and down regulated with beta-amyloid treatment to primary cultured microglia cells by RT-PCR analysis.

- Microglia cell의 activation의 관여 인자를 현재 분자생물학의 방법 중 다량의 유전자로부터 동시에 발현을 관찰할 수 있는 DNA chip의 기술(Fig. 5)을 이용하여 관찰한 결과 31개의 유전자가 beta-amyloid처리에 의해서 발현이 증가를 보였고, 23개의 유전자가 감소를 보였다. 그리고 이 발현의 증가와 감소를 확인하기 위해서 RT-PCR로 확인하여 14개의 유전자만이 DNA chip결과와 일치하였다. 이 14개의 유전자를 계속 Northern blotting과 western blotting과 같은 분자, 생화학적인 방법을 이용해 발현을 확인을 할 예정이다(Ginsberg et al., 2000, Lee et al., 2000).
Fig. 5. 54 Genes that were up and down regulated with beta-amyloid treatment to primary cultured microglia cells using DNAchip and then 14 genes among 54 genes was confirmed by RT-PCR analysis.

- 또 하나의 Microglia cell의 activation의 관여 인자를 찾는 approach는 기존에 알고 있는 inflammation signal pathway에 관련된 신발된 유전자가 있는 2 membrane(Microarray)을 가지고 Northern blotting과 같은 방법으로 hybridization한 결과 control로 TNF-a에 대하여 증가한 유전자는 2, 감소한 유전자는 3개로서 약 5개의 기존의 기능을 알고 있는 유전자가 beta-amyloid의 처리에 의한 Microglia의 activation 에도 관여하는 것을 밝혔다(Fig. 6).

- 이상으로 beta-amyloid의 처리에 의한 Microglia의 activation에도 관여 하는 유전자임을 3가지 방법의 approach로 현재까지 25종의 새로운 유전자를 확인하였고 그 기능을 연구 할 예정이다.
enes that were up and down regulated with beta-amyloid treatment to primary cultured microglia cells using Microarray membrane (included 300 genes related inflammation) and then were confirmed by RT-PCR analysis.
공 잔소고정 특이 유전자 EST 분석 및 잔소고정 특이 유전자 선택

US public soybean EST project (Shoemaker et al., 2002)에 의해 deposit된 GenBank EST Others database에서 download한 공 ESTs를 cluster analysis에 의해 nodule 및 B. japonicum (Bj) infection ESTs를 추출하였다. 이 과정을 거쳐 156 putative nodule-specific ESTs와 56개의 Bj infection-specific ESTs가 얻었다. 추출된 ESTs의 수는 기대되는 것보다 한층 적었다. 이들을 cluster로 묶은 결과 nodule의 경우에는 103 separate clusters로 분류되었고, Bj infection의 경우에는 53 separate clusters로 분류하였다. in vivo에서 이들의 expression profiles를 검정하기 위하여, PCR amplification을 위한 각각의 EST clusters에 대한 한 샘의 primers를 고안하였다. 150b sequence 보다 더 짧은 39 ESTs는 분석되지 않았다. 117 clusters 중 97의 기대된 크거나 기대된 크기보다 더 긴 PCR products를 얻었다. 24 primer 쌍은 아마도 너무 큰 intron(s)를 함유하거나 EST sequences의 ambiguity 때문에 어떠한 significant PCR products를 생성하지 않았다. 어떠한 products도 생성하지 않았던 몇 개의 ESTs는 명백히 이들의 조직 기원 (nodule)에 따라서 bacterial sequences이다.

Genomic DNA PCRs에서 products를 추출한 EST clusters를 multiplex RT-PCR과 BLASTX searches에 의해 분석하였다. Multiplex RT-PCR에 의한 환 EST cluster의 기대된 size에 상응하는 product가 nodule에서는 생성되었으나 shoot에서는 agarose gel 상에서 보이지 않는 경우에, 그 EST cluster는 root nodule-specific이라 간주되었다 (Fig. 7). 기대했던 것처럼, BLASTX searches는 이 연구에서 확인된 많은 N-specific EST clusters가 이미 알려진 nodule 및 뿌리 특이 유전자와 유사함을 지시하였다 (Table 3). 이들 N-specific EST clusters를 함유한 cDNA clones를 확보하기 위하여 쌍근·뿌리특 cDNA library를 제작하였고, 이 library에서 300개의 임의의 clones의 ESTs를 생산하였다. 이들 300개 ESTs의 분석은 일반 가량의 clones이 전장 cDNA로 예측되어, 본 연구에서 발굴한 N-specific EST clusters의 전장 cDNA를 찾는데 본 library를 사용하고 있다.
Fig. 7. Multiplex reverse transcriptase-polymerase chain reaction from root nodule RNA (N) and shoot RNA (S). Genomic DNA (G), total RNA without RT treatment (NR), and water (W) were used as controls. Soybean actin gene was amplified as an internal controls. M, 1kb plus ladder. The sizes of PCR products amplified from genomic DNA using AI893 and AI903 primers indicate that the primer pairs spans intron. Multiplex PCR using three pairs of primers, AI794, AI903, and actin primers, clearly showed the nodule specificity of AI903.

Table 3. Classification of N-specific EST clusters confirmed by multiplex RT-PCR.

<table>
<thead>
<tr>
<th>Class</th>
<th>Number of cluster</th>
<th>E-values in BLASTX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Known nodulins</td>
<td>9</td>
<td>< 2e-52</td>
</tr>
<tr>
<td>Known root-specific proteins</td>
<td>3</td>
<td>< 1e-11</td>
</tr>
<tr>
<td>Function predictable, previously found in nonlegumes</td>
<td>17</td>
<td>< 5e-05</td>
</tr>
<tr>
<td>Hypothetical proteins</td>
<td>4</td>
<td>< 2e-04</td>
</tr>
<tr>
<td>Low similarity (E values > 0.001) or no hits to the database</td>
<td>24</td>
<td>> 0.001</td>
</tr>
</tbody>
</table>
○ 비 EST 클론의 생산 및 선별클론의 기능분석

- 비 EST 클론의 생산 및 홍미유전자 선별. 약 240개의 random 클론의 염기서열을 확인하여 22개의 unigene를 얻었으며 redundancy는 9%에 해당하였다. 이는 발표된 비 draft 전체 개능생물기서열(Goff et al., 2002; Yu et al., 2002)과 비교하였을 때, unigene 클론 중에서 “전사조절인자와 DNA 합성” 및 “단백질합성”에 관여하는 것이 12.1% 및 13.5%로 상당히 높게 나타났으나 대사관련 클론은 다소 적은 것으로 보였다 (Fig. 8). 이는 배의 초기 발달에서 전사조절 및 단백질합성이 왕성하게 알려내되며, 적은 수의 클론을 분석하였기 때문에 확실한 결론은 유보되어야 할 것이다.

Fig. 8. Functional distribution diagram of rice embryo EST. (A) Functional clustering estimated from rice draft genome sequence (Science 296: 92–100). (B) Functional clustering of 5 day old rice embryo EST.

일반 222개의 EST클론 중에서 그 기능을 살펴 본 가치가 있는 5개의 클론을 선택하였는데, 이들은 double-stranded RNA 결합단백질(Burd and Dreyfuss, 1994), 2개의 Pumilio 단백질(Gamberi et al., 2002), minichromosome maintenance(MCM) 단백질
(Forsburg et al., 1997), Schizosaccharomyces pombe HSK1 (Masai et al., 1995)의 ortholog 단백질에 해당하였다.

 일부 EST 클론의 생산 및 홍미유전자와의 관련. 선별한 클론의 전장 cDNA를 확보하기 위하여 pACT vector의 oligomer와 partial 클론의 5’에 위치하는 oligomer를 이용하여 1차 PCR를 수행하고, putative CDS를 제증폭하였다. 추론한 야미노산 염기서열을 바탕으로 이들 단백질의 일차구조를 살펴보았을 때, 기능으로 큰 domain들이 내부에 존재하는 것으로 보였다 (Fig. 9).

![Diagram](attachment:image.png)

Fig. 9. Primary structure of the selected clones. OsPum92 and OsPum113 revealed Pumilio protein, OsdsRNP double-helix RNA-binding protein, OsMCM2 MCM protein, and OsHSK1 HSK1 protein.

선별한 5종의 클론에 대한 전사체의 발현을 살펴보기 위하여 RT–PCR을 수행하였 다. 이중 OsMCM2의 RNA는 모든 조직에서 발현되었고, OsMCM2단백질도 항체를 만 들어 immunoblot을 수행한 결과 동일한 결과를 보여주었으나 양분이 결합되었을 때 영 향을 받는 것으로 보였다 (Fig. 10). 자포니카버의 계통염기서열 분석에 의하면 비는 약 8종의 MCM 단백질을 갖고 있으며, 이들이 각각 *Xenopus, Drosophila* 등의 타생물들의 경우 어느 ortholog와 유사한 기능을 갖는가를 확인하는 것은 좀 더 확신이 필요하다. 이를 위하여 OsMCM2의 phylogeny를 살펴보았을 때, 분열효모의 MCM2와 유사한 것
으로 판단되어 MCM2 돌연변이 분열효모의 complementation을 수행하였다 (Fig. 11). 이로부터 OsMCM2는 분열효모의 MCM2(cdc19로도 명명)와 동일한 기능을 갖는 것으로 확인되었다. Heterologous 시스템에서 확인된 기능을 바에서 재확인하기 위하여 overexpression 또는 antisense construct를 만들어 형질전환하였으며, 현재 각 construct 당 100여개의 돌연변이 line을 신별배지에서 재분화하고 있다 (Fig. 12).

Fig. 10. Transcription and translation of OsMCM2. (A) RNA expression analysis in various tissues. Total RNA was synthesized using Tth polymerase (MasterAmp TM, Epicentre) and gene-specific primers (5'-CCTGAAATGTGATTCCATAG CTTACTTATCCAAGA and 5'-AGGGAGTAGTTGCTATTCCAGACCTCAAGT). (B) Result of genomic DNA blotting. 5' portion (about 300 bp) (left panel) and full CDS (right panel) were used as probes. (C) Immunoblot analysis in various tissue. OsMCM2 antibody (1:3000) was hybridized with a filter that 30ug of total protein was separated with 8% SDS-PAGE gel. 1/2MS, half-strength MS medium.
Fig. 11. Complementation with *CDC19*- yeast mutant (*Shizosaccharomyces pombe*). (A) MCM2 phylogeny. At, *Arabidopsis thaliana*; Hc, *Homo sapiens*, Os, *Oryza sativa*; Sc, *Shizosaccharomyces cerevisiae*; Sp, *Shizosaccharomyces pombe*, Xe, *Xenopus oocyte*; Zm, *Zea mays*. (B) Yeast expression vector regulated by Nmt promoter (upper) and complementation with *CDC19* - yeast mutant (FY360h+ cdc19-P1 leu1-32 ade-M210 ura4-D16 ts). con, transformation with empty vector; 172-1 and 172-2, transformation with the OsMCM2 vector.

Fig. 12. Expression vector of OsMCM2 to identify its function in plant. CaMV35S promoter and rice grain specific glutelin promoter were inserted into sense or antisense orientation.

OsHSK1은 모든조직에서 발현되는 것으로 보였으며, OsPum92는 종자에서 높게 발현되었다 (Fig. 13). OsPum113와 OsdsRNP의 발현은 아직 조사되지 않은 상태이며, OsPum92의 발현이 embryo에서 높게 나타날 가능성이 있지만 좀 더 조사할 필요가 있다.
Fig. 13. RT-PCR of OsHSK1 and OsPum92 transcripts. 3' UTR+CDS portion (about 300 bp) of the gene was synthesized.
제 4 장 사업(연구개발)목표 달성도 및 대의가여도

생명공학연구원 내 국가유전체정보센터 및 인간유전체기능연구사업단과 협동으로 대량의 EST의 분석을 수행하여 공개된 거대 EST database의 분석을 성공적으로 수행하여 공개된 생물정보를 효과적으로 활용하는 기술을 촉진하는 계기를 마련하였다. 원래 목표로 하였던 400개 유전자와의 cDNA full-length sequences는 인간과의 genome sequence의 공개된 data를 이용해 예측이 가능한 수준에 있고, microarray, macroarray, RT-PCR 및 yeast mutant의 분석으로 40개 이상의 cDNA 클론은 기능이 알려지지 않은 유전자에서 전사된 것임을 확증하고, 계속적인 분석을 진행하고 있다. 본 과제의 결과는 새로운 개념의 전단 및 치료제 개발과 신품종의 개발을 위한 기초정보제공 할 수 있을 것이라 생각된다.

이 과제를 추진하는 과정에서 여러 단계에서 bioinformatics의 활용이 필수적이나 인력활용에 어려움이 있었는데, 참여연구원들의 노력으로 원내의 국가유전체연구센터 등 bioinformatics 전문으로하는 부서에 연구자료분석 등을 의뢰할 수 있는 system의 활성화의 시급성을 부각시켜 왔다.
제 5 장 연구개발결과의 활용계획

거대 EST database의 분석으로 얻은 암발생, Microglia의 활성화, 절소고정, 배발생 관련 cDNA 클론들 중 기능이 밝혀져지 않은 클론들은 계속적인 유전자 기능 구명의 재료로 사용될 수 있다. 본 과제의 결과들은 앞으로 주요 국가 연구개발사업에 참여하는 데 기초자료로 사용될 것이고, 연구 홍보가 일치하는 국내 연구자들에게 클론의 분양도 가능할 것이다. 활용계획이 가시화되고 있는 일례는 절소고정과 비 배발생 관련 유전자 의 발굴 결과는 2002년 국책 유전자원지원활용사업 내 식물유전체연구소개은행 과제에 참여하는 근거를 제공하였고, 이과제 중 전장 cDNA의 발굴은 소개은행과제에서 계속 지원될 예정이다.

Masai H, T. Miyake, K. Arai. hskl+, a Schizosaccharomyces pombe gene related to Saccharomyces cerevisiae CDC7, is required for chromosomal

