Proteomics를 이용한 심혈관질환 약물표적 발굴

Uncovering Drugable Targets of Cardiovascular Disease through Proteomics

한국 생명 공학 연구원
제출문

한국생명공학연구원장 귀하

본 보고서를 "Proteomics를 이용한 심혈관질환 약물표적 발굴" 과제의 기관교류 사업보고서로 제출합니다.

연구기관명: 한국생명공학연구원
연구부서명: 지질대사연구실
세부과제책임자: 정태숙
연구원: 오구택, 박성구
이상구, 허광래
김판희, 조경현
유승우, 김주영
안소진, 이대우
박지영, 유하나
김용수, 오경훈
고창훈, 유영환
요약문

I. 제목

Proteomics을 이용한 심장관절관 약물표적 발굴

II. 연구개발의 목적 및 필요성

2001년 2월 발표된 인간기능프로젝트(Human Genome Project)는 생명 현상의 이해와 이에 따른 각종 질병의 치료에 기여적인 지평을 열 것으로 평가된다. 하지만 전문가들은 1차원적인 염기서열과 지도만으로 지금프로젝트에 거는 많은 기대를 충족시키기에는 부족하다고 생각하며 지금의 기능 해석이 되려야만 결실을 맺을 것이라고 언급한다. 이는 지금의 염기 서열에서부터 실제 생명 현상을 나타내는 단백질 영역에 이르는 폭범위한 정보와 지식의 통합이 이루어지는 이른바 포스트지놈(Post-Genome)시대의 중요성을 강조하고 있는 것이다. 지금의 유전 정보에서 유래하는 단백질들과의 구조, 기능, 상호작용 등을 밝히는 프로토메스가 지금의 구조 및 기능을 밝히는 지노믹스(Genomics)와 함께 이러한 필요를 촉구시키줄 수 있는 분야로서 지노믹스의 발전에 따라 주목을 받고있다. 프로토메스란 지금에서 만들어지는 단백질의 통제인 프로토메스(Proteome)를 다루는 분야이다. 프로토메스는 당초 정상적인 세포와 그렇지 않은 세포의 단백질들과 분리, 비교 분석하는 의미로 사용되었으나 현재는 기능지노믹스(단백질 발현과 유전자발현을 연결), 구조프로토메스(단백질의 임체구조 분석), 단백질간 상호작용, 생화학 대사경로의 연구까지를 총망라하는 개념으로 발전하였다. 프로토메스의 연구 과정은 특정 세포로부터 전체 단백질을 분리 및 확인하며, 그 기능과 상호작용을 분석하는 과정으로 요약할 수 있다.

고콜레스테롤증은 촉장 경화의 중요한 위험 인자로서, 관능적 질환에 의한 사망을 증가시킨다. 최근 선진국의 경우처럼 우리나라도 육류 섭취의 증가에 따른 심장 순환기계 질환이 급증하고 있으나, 고콜레스테롤증 및 동맥경화증 치료제는 100% 수입에 의존하고 있는 실정이다. 따라서 선진국과 경쟁력이 있는 새로운 심장순환기 관련 유용물질의 탐색 및 개발이 절실히 필요하다. 지금까지 동맥경화증을 비롯한 클레스테롤 대사 이상으로 인한 질병의 예방 및 치료 개발은 대략 클레스테롤 대사성 특정효소의 역할을 해하는 방향에서 치열한 경쟁을 벌어왔다. 그러나, 호소 환경의 제어를 통한 치료는 작용시간이 매우 빠르고하며 부작용 또한 심각한 문제로 대두되고 있다. 본 연구는 유전자 발현을 제어할 수 있는 물질을 탐색함으로써 클레
스테롤 대사 이상 질병의 해결에 근본적으로 접근하고자 한다.

한편 혈액내에 존재하는 고농도의 LDL은 고지혈증을 유발하게되며, 동시에 동맥경화의 주요 원인인자이다. 고지혈증 혈관내 존재하는 미세세포에 작용하여 염증 반응을 유발하는 것으로 알려져 있으며, 이렇게 시작된 염증반응은 결국 동맥경화증으로 발전하게 된다. 따라서 고지혈증의 근본 원인을 파악하고 새로운 작용점을 발굴하고자 하며, 실험관찰관에 관련된 마커 단백질을 발굴하려면 기존의 개별 유전자 발굴을 위한 전통적인 방법에서 탈피하여 지노믹스와 프로테오믹스의 기법을 연계한 실험 방법을 도입하여 동맥경화와 고혈압에 관련된 마커 단백질들의 대량 분석과 스크리닝이 요구된다.

본 연구팀은 예비 실험을 수행하여 프로테오믹스가 유용한 실험기법으로 쓸 수 있음을 확인하였고, 진행연구결과에서 탁월한 촉종형성 억제효과를 보인 의약후보물질을 대상으로 프로테오믹스를 이용한 실험관찰관 약물표적을 발굴에 성공적인 결과를 도출하고자 하였다.

III. 연구개발의 내용 및 범위

<table>
<thead>
<tr>
<th>연구 분야</th>
<th>연구 내용 및 범위</th>
</tr>
</thead>
</table>
| 프로테오믹스를 이용한 타겟 단백질 발굴 및 심장순환기질환 관련유전자와 발생역학물질 탐색 | - 질환동물모델에서의 프로테움 분석
- 질환동물모델에 의약후보물질의 투여 후 간 장기별 (liver, serum 등) 프로테움 분석
- 동물모델에서 탐색된 단백질에 대한 인간 유사 유전자 탐색 |
| 동물모델에서 의약후보물질의 작용점발굴 및 Marker 단백질 발현변화 연구 | - 질환동물모델의 각 장기별(liver, serum 등) 프로테움 분석과 정상 동물모델의 각 data와의 비교 분석
- 의약후보물질 처리에 의한 각 장기에서의 marker 단백질 발현의 증감 여부와 발현에 미치는 영향 분석
- 각 장기에서 기존에 알려진 동맥경화 표적물질의 분석 |
| 세포 모델 시스템을 이용한 의약후보물질의 작용점 기능 연구 | - native LDL에 의하여 혈관의 근육세포의 성장 촉진 현상 발견 및 작용기전 연구
- 평활근세포의 성장억제 탐색 연구 |
| 실험관찰관 의약선도물질 탐색 | - 의약선도물질 유도체의 합성 및 약리활성 검색
- LDL-Antioxidant 탐색 및 분리정제 |
IV. 연구개발 결과

1. 결한동물모델에서의 각 임기별 프로테임 분석

B6 마우스와 ApoE KO 마우스의 고지혈증 식이를 투여하기 시작한 시점과 1주 후 4주 후의 각 임기 (brain, heart, serum, liver, aorta, adrenal gland)를 이용해 proteome를 분석하였다. 새로운 생겨나는 단백질 spot들과 사라지는 단백질 spot들을 MALDI-TOF를 이용하여 분석하였다. 고지혈증 유발시 발생의 변화가 있는 단백질을 혈청 14 개, 혈청 14 개, 심장 12 개, 간 16 개 및 부신 8 개 총 64개를 발굴하였 으며, 이들 중 특히 low density lipoprotein의 oxidation modification과 관련이 높을 것으로 여겨지는 thioredoxin peroxidase 2 와 혈관의 수축과 관련이 높을 것으로 예측 되는 tropomyosin은 간, 대동맥 및 부신에서 증폭해서 발현이 되는 양상을 보였다.

2. 의약후보물질의 표적 단백질에 관한 연구

DHPPA 는 전반적으로 혈청지단백질에 영향을 미치지 않았음을 알 수 있으며, 현재 PPAR-alpha agonist로 알려진 finofibrate는 기존에 알려진 작용기전과 마찬가지로 혈청지단백의 개선효과가 나타나며, 특히 HDL-cholesterol의 함량을 증가시키는 효과가 있음을 알 수 있었다. DHPPA는 등맥경화 마우스 모델 및 토끼 모델에서 등맥벽에 형성되는 지방선조의 면적이 감소시키는 효과가 있음을 알 수 있었고, 이는 동맥경화의 발생 초기에 단핵구 세포가 동맥벽면에 부착하는데 관여하는 vascular cell adhesion molecule-1 (VCAM-1)의 발현을 억제함을 알 수 있었다. 즉, DHPPA의 표적 단백질 중 하나가 VCAM-1임을 알 수 있었다.

고콜레스테롤 식이 (HCHF)가 공급된 생쥐 그룹으로부터 체취한 소량 혈장 (0.2 ml)으로부터 지단백질을 분리 후 그 포르폴을 조사하여, 혈중 콜레스테롤의 증가 양상과 유사한 지단백 및 아포지단백질의 증가 양상을 확인하였다. 의약후보물질로서 사용된 DHPPA의 효과를 혈액내의 지단백질 분획 및 아포지단백질 발현량에 미치는 양상을 조사한 결과, 대조군(lovasatin)과 비교하여 HDL의 임자크기가 유지되며, apoA-I의 발현이 증가하는 등의 훌륭한 지단백질 대사 개선효과를 보였다.

3. 세포 모델에서의 marker 단백질의 발현 분석

Native LDL에 의하여 혈액 연근육세포의 성장이 촉진되는 현상을 발견하였다. 그 작용기전의 연구를 통하여, 이런 현상이 기존의 LDL 수용체가 아닌 새로운 타입의 수용체인 G-protein coupled receptor (GPCR)가 관여함을 확인하였다. 또한 LDL에 의하여 새로운 타입의 염증 인자인 IL-8이 생성됨을 확인하였으며, 이런 현상도
GPCR에 의하여 유도된 것을 확인하였다. 상기의 모든 현상은 ROS의 생성을 통하여 시 작점을 식별을 통하여 확인하였다.

4. 섬멸완전환 의약선도폭결 탐색

히드록시 히드로신험산의 에스테르 유도체 함성에 있어서, 반응물이 알킬 알칼리 일 때의 에스테르 제조방법과 반응물이 알킬 할라이드 일 때의 에스테르 제조방법을 확립하였다. 염성된 에스테르의 알킬 나프탈렌 부분은 친구성의 변화를 주기 위해 알킬 탄소수를 다르게 하였고 또한 나프탈렌 위치도 변화를 주었다. 각 유도체의 구조는 분광학적 방법으로 확인하였다.

*Penicillium herquei*로부터 solvent extraction, 각종 column chromatography, HPLC를 이용하여 분리한 atrovenetinone은 1.9 µM 농도에서 IC₅₀치를 갖는 강한 활성과 보였다. 비교 항산화물질인 probucol(IC₅₀ = 2.1 µM) 농도에서 차이가 비슷한 정도의 활성을 보였다. Human LDL를 이용하여 continuous monitoring (234 nm)을 통해 diene 생성량을 측정한 결과 LDL 산화로 인한 diene 생성이 지연되는 것을 관찰할 수 있었고, 또 다른 항산화 활성의 결정 방법인 electrophoretic mobility(전기적 이동도)를 통하여 활성을 관찰하여 본 결과 농도의존적으로 LDL 산화 억제를 통해 전기적 이동도가 감소되었다. 따라서 atrovenetinone은 LDL-oxidation 활성 억제에 의한 고지혈증 및 동맥경화증 예방 및 치료에 개발을 위한 후보물질로서의 가능성을 보여주고 있다.

산조합나무(Spiraea blumei) 잎의 MeOH 추출액의 CHCl₃층으로부터 항산화 활성 물질(IC₅₀ = 7.4 µM)을 분리하여 3-methoxy-5-(2’-propenyl)-1,2-benzendiol로 구조 결정하였으며, 유사화합물인 Eugenol은 보다 강한 LDL-항산화 활성(IC₅₀ = 2.2 µM)을 나타내어, 처음으로 이 두 화합물의 LDL-항산화 활성을 밝혀냈다.

V. 연구개발결과의 활용계획

- 순환기계 질환 관련 단백질에 대한 기초 데이터를 제공하여 프로테이스 기법을 이용하여 치료연구의 방향을 설정하는데 활용 가능
- 순환기계질환과 관련된 단백질을 의학적 표적으로 이용하여 새로운 개념의 약물을 개발하는 기초 자료로 활용 가능
- 생쥐모델에서 고지혈증에 의한 클러스테롤 및 지질 성분의 변화가 치단백질과 아포지단백질의 조성 변화에도 영향이 있음을 증명함으로써 향후 동물실험에 활용
- 의약후보물질은 동맥경화, 고지혈증 치료에 개발에 이용
목 차

<table>
<thead>
<tr>
<th>제</th>
<th>제목</th>
<th>페이지</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 장</td>
<td>서 론</td>
<td>1</td>
</tr>
<tr>
<td>1절</td>
<td>연구 개발의 필요성</td>
<td>1</td>
</tr>
<tr>
<td>2절</td>
<td>연구개발 목표 및 내용</td>
<td>6</td>
</tr>
<tr>
<td>2 장</td>
<td>국내외 기술 개발 현황</td>
<td>7</td>
</tr>
<tr>
<td>3 장</td>
<td>연구개발수행 내용 및 결과</td>
<td>12</td>
</tr>
<tr>
<td>1절</td>
<td>연구개발수행 내용</td>
<td>12</td>
</tr>
<tr>
<td>2절</td>
<td>연구개발수행 결과</td>
<td>24</td>
</tr>
<tr>
<td>4 장</td>
<td>연구개발목표 달성도 및 대외기여도</td>
<td>54</td>
</tr>
<tr>
<td>1절</td>
<td>연구개발목표의 달성도</td>
<td>54</td>
</tr>
<tr>
<td>2절</td>
<td>대외 기여도</td>
<td>55</td>
</tr>
<tr>
<td>5 장</td>
<td>연구개발결과의 활용계획</td>
<td>56</td>
</tr>
<tr>
<td>6 장</td>
<td>참고 문헌</td>
<td>67</td>
</tr>
</tbody>
</table>
제 1 장 서론

제 1 절 연구 개발의 필요성

2001년 2월 발표된 인간지놈프로젝트(Human Genome Project)는 생명 현상의 이해와 이에 따른 각종 질병의 치료에 획기적인 지평을 열 것으로 평가된다. 하지만 전문가들은 1차원적인 염기서열과 지도만으로 지놈프로젝트에 기는 많은 기대를 중족시키기에는 부족하다고 생각하며 지금의 기능 해석이 뒤따라야만 결실을 맺을 것이라고 언급한다. 이는 지금의 염기 서열에서부터 실제 생명 현상을 나타내는 단백질 영역에 이르는 광범위한 정보와 지식의 통합이 이루어지는 이른바 포스트지놈(Post-Genome) 시대의 중요성을 강조하고 있는 것이다. 한편 지난 5월 11일에는 Novartis가 개발한, 만성 골수성 백혈병 치료에 쓰이는 농치인 글리베네(Glivec)의 미국 내 판매승인이 이루어졌으며, 중앙 치료 분야에 있어 Glivec은 암세포가 어떻게 작동하는가에 대한 이해를 바탕으로 개발된 최초의 합리적 약물 디자인의 산물이며 그 효과가 기대 이상으로 나타나 일반인들에게는 기적의 약으로 받아들여지고 있다. Glivec의 개발 과정은 암세포의 이상 증식에 관련하는 단백질을 프로تي오믹스(Proteomics)를 이용해 찾아내고, 이의 기능을 억제하는 물질을 디자인함으로써 이루어진 것이다. Glivec의 개발은 암을 비롯한 각종 질병의 진행과정에 관여하는 요인들을 효율적으로 찾을 수 있으면, 이를 이용해 치료나 예방 등에 이용할 수 있는 약의 개발방법이 촉진될 수 있을음을 보여 주는 최근의 의약개발 성공사례이다. 그러나 실제로 이 같은 일이 보편화되려면 지능에 대한 정보에서부터 단백질에 대한 정보가 유기적으로 연결되어야만 가능하다. 지능의 유전 정보에서 유래하는 단백질들의 구조, 기능, 상호작용 등을 밝히는 프로티오믹스가 지능의 구조 및 기능을 밝히는 지노믹스(Genomics)와 함께 이러한 필요를 충족시켜 줄 수 있는 분야로서 지노믹스의 발전에 따라 주목을 받고있다. 프로티오믹스는 지능에서 만들어지는 단백질의 총체인 프로티게놈(Proteome)을 다루는 분야이다.

프로티오믹스는 당초 생장적인 세포와 그렇지 않은 세포의 단백질들을 분리, 비교 분석하는 의미로 사용되었으나 현재는 기능지노믹스(단백질 발현과 유전자가발현을 연결), 구조프로티오믹스(단백질의 임체구조 분석), 단백질간 상호작용, 생화학 대사경로의 연구까지를 총망라하는 개념으로 발전하였다. 프로티오믹스의 연구 과정은 특정 세포로부터 전체 단백질을 분리하고 확인하며, 그 기능과 상호작용을 분석하는 과정으로 요약할 수 있다. 세포나 조직에서 나온 복잡한 단백질의 혼합물에서 단백질들을 서로
분리해내는 작업은 이후 이어지는 일련의 분석에 있어 매우 중요한 역할을 한다. 이를 위한 전통적인 방법으로 2차원적인 전기영동(2-Dimensional Gel Electrophoresis, 2-DE)이 있는데 이는 여러 단백질들을 그 크기와 전기적 특성에 의하여 분리하는 방법이다. 분리된 단백질이 어떠한 단백질인지지를 확인하기 위하여 질량분석기(Mass Spectrometry, MS)를 이용하여 단백질 혹은 이를 효소를 이용해 더 작게 자른 웨타 이드의 분자량을 측정함으로써 정확한 질량과 아미노산 시열, 단백질 변형 여부와 그 양상을 알아내야 한다.

프로테오믹스의 목표는 다음과 같다. I) 프로테오믹스는 기능을 갖는 단백질들의 발현을 종합적이고 정량적으로 측정하는 가장 직접적인 수단이고, ii) 생물학적인 동요(perturbation)(결핍, 약물투여, shock등)에 의하여 변하는 단백질들의 발현양상의 변화를 정량하게 관찰할 수 있으며, iii) in vivo에서 유전자발현의 궁극적인 양상을 규명할 수 있고, iv) 유전자, 단백질 및 질병 간의 연결고리를 제공한다.

다시 말해서, 프로테오믹스는 유전체 구조와 세포내 행동간에 접을 벗는 역할을 하는데 계놈의 다이나믹한 단백질 생성물과 그 들간의 상호관계를 연구하는 분야이다. 생명공학 분야에서 이 기술의 발전은 대량발효활성(High-throughput screening)이 가능한 2-D 전기영동 분석과 MALDI-TOF (matrix-assisted laser desorption ionization time of flight)에 의한 자동화된 단백질 분자 구조 분석 기술 및 이 들을 지원하는 생물정보학 (Bioinformatics)의 발전과 연계되어 있다. 따라서, 프로테오믹스는 세포의 생리적 상태변화에 따른 분자적인 현상과 세부적인 기전을 발굴할 뿐만 아니라 어떻게 단백질의 표현형(phenotype)이 질병과 약물 처리에 따라 변화하는지를 분석할 수 있고, 이를 통해 약물표적의 식별과 검증할 수 있게 된다.

실제로, 프로테오믹스가 약물표적발굴에서도 가장 강력한 기술인 이유는 i) 계놈에 이터 (DNA/RNA)는 약물표적을 식별하는데 충분한 정보가 되지 못할뿐더러, 단백질 만이 실제로 약물의 mode-of action의 최종 장소이고, ii) 유전자 발현에서 보이는 효과들은 단순히 단백질수준에서 나타나 약물효과에 대한 반응에 지나지 않으며, iii) 유전자가 발현과 단백질 발현간에는 직접적인 관련성이 항상 있는 것은 아니기 때문에 유전자가 이전의 기능간의 교감역할을 할 수 있는 단백질의 역할을 분석하는 것이 중요하며, iv) 단백질-단백질간의 결합이야말로 세포내 생물학적인 작용의 최종적인 행위가 되기 때문이다.
<table>
<thead>
<tr>
<th>Venture, Company</th>
<th>Brand Name</th>
<th>Core technology & Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein Identifications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HybriGenics</td>
<td>PIM</td>
<td>Novel Yeast 2-hybrid</td>
</tr>
<tr>
<td>Ciphergene Biosystems</td>
<td>Protein Chip</td>
<td>Protein chip</td>
</tr>
<tr>
<td>InforMax, AxCell</td>
<td>Vector NTI</td>
<td>User-friendly software</td>
</tr>
<tr>
<td>Phyllos</td>
<td>PROfusion HIP</td>
<td>In vitro RNA-Protein fusion →micro-ELISA type protein affinity chip</td>
</tr>
<tr>
<td>SurroMed</td>
<td>Nanobar Code</td>
<td>Nanobarcodes identification tags (liquid microarray)</td>
</tr>
<tr>
<td>3rd Millenium, Hybrigenics</td>
<td>BioPathway Consortium</td>
<td>User-friendly Software</td>
</tr>
<tr>
<td>Identification, Quantification, Profiling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proteologics (in secret)</td>
<td></td>
<td>Separation of membrane proteins</td>
</tr>
<tr>
<td>Capron Pharmaceuticals</td>
<td>HRS</td>
<td>High Resolution Spatially-Resolved organelle isolation method</td>
</tr>
<tr>
<td>SurroMed</td>
<td>Nanobar Code, SurroScan</td>
<td>Nanobarcodes identification tags (liquid microarray) Microvolume Laser Scanning Cytometer (MLSC)</td>
</tr>
<tr>
<td>Millenium, Ciphogen</td>
<td>Protein Chip</td>
<td>Protein markers of disease by Mass Spec.</td>
</tr>
<tr>
<td>Molecular Staging</td>
<td>RCA, immunoRCA</td>
<td>Rolling circle amplification peomer-tagged Ab</td>
</tr>
<tr>
<td>Function, Annotation, Applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Georgetown Univ.</td>
<td>iProClass</td>
<td>Database for Protein family classification</td>
</tr>
<tr>
<td>Incyte Genomics</td>
<td>Bio-Knowledge Library</td>
<td>Curation of research literature for model organism, such as YPD, PombePD, WormPD, PathoPD, HumanPSD, GPCR-PD</td>
</tr>
<tr>
<td>Promega</td>
<td>IVBC</td>
<td>In vitro Expression Cloning TNT Express 96 Trx/4 Systems</td>
</tr>
<tr>
<td>Harvard Medical</td>
<td>FLEX</td>
<td>Full-Length expression repository</td>
</tr>
<tr>
<td>Xerion Pharmaceuticals</td>
<td>Xcelerate, CALI X-plore</td>
<td>Identification of function sites, Chromophore-Associated Laser Inactivation, XCALibur</td>
</tr>
<tr>
<td>MDS Proteomics</td>
<td>PathMap, Bind, LeadFinder</td>
<td>HTS mapping of interactions, Mass Spec Bio-Informatics Database Screening of small molecule</td>
</tr>
<tr>
<td>Oxford GlycoSciences</td>
<td></td>
<td>HTS Mass Spectroscopy</td>
</tr>
<tr>
<td>Structural Genomix</td>
<td></td>
<td>Crystal, X-ray</td>
</tr>
<tr>
<td>Cellular Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signature BioSci.</td>
<td>MCS</td>
<td>Multipole Coupling Spec. (microwave)</td>
</tr>
<tr>
<td>Myriad Genetics</td>
<td>ProNet, ProTrap</td>
<td>Industrial-scale 2-hybrid system</td>
</tr>
</tbody>
</table>
고혈압은 식사 과도의 증상 감소와 점증의 중요한 위험 인자로서, 관측 약물 치료에 의한 사망을 중가시킨다. 최근 선진국의 경우처럼 우리나라도 약물 섭취의 증가에 따른 심장순환기계 질환이 급증하고 있으나, 고혈압이증 및 동맥경화증 치료는 100% 수액에 의존하고 있는 실정이다. 따라서 선진국과 경제력이 있는 새로운 심장순환기계 관련 유용 물질의 탐색 및 개발이 절실히 필요하다. 지금까지 동맥경화증을 비롯한 클레스테롤 대사 이상으로 인한 질병의 예방 및 치료 체계 개발은 대략 클레스테롤 대사로 특정 호소의 역사를 저해하는 방향에서 치열한 경쟁을 벌여왔다. 그러나, 효소활성의 제어를 통한 치료는 작용시간이 매우 한시적이며 부작용 또한 심각한 문제로 대두되고 있다. 본 연구는 유전자 발현을 계어할 수 있는 물질을 탐색함으로써 클레스테롤 대사 이상 질병의 해결에 근본적으로 접근하고자 한다.

현재 사용되고 있는 고혈압 및 동맥경화증 치료제는 간독성 등의 부작용이 수반되는 질병 특이적이지 못한 단점이 있다. Knock-out mouse는 생체내 혈압 및 지질대사 등에 중요한 역할을 하는 유전자를 knockout시킨 모델로서 해당유전자와의 역할을 정확하게 연구할 수 있고, 새로운 유전자를 검색하는 모델로서 아주 적합하다고 할 수 있다. 따라서 기존의 치료체와는 차별성이 있는 terget molecule을 찾아서 치료제를 개발하는 것은 매우 중요하다고 할 수 있다.

심혈관계 의약후보물질의 효능은 상당부분 혈액내의 효소 혹은 단백질의 발현에 영향을 주며, 이는 곧 클레스테롤 농도의 변화, 지단백질간 클레스테롤의 농도변화, 지단백질의 단백질농도 변화, 주요 아포지단백질의 농도변화, 고밀도지단백질 (HDL)의 조성과 크기 변화에 필연적인 영향을 준다. 유사한 예로써, Simvastatin을 투여하면 HDL와 상호작용 하는 막단백질들 (후에 HB, HB로 명명됨)의 발현이 50% 이상 감내 이 합이 원래 모델로 한 실험에서 증명되었고, 또 최근의 보고에 의하면, 사람들세포 (HepG2)에 화학보노이드류 (Naringenin, Hesperitin)를 처리하였더니 저밀도지단백질 (LDL)의 주된 단백질인 apoB의 세포외 분비가 저해되었고, 아울러 ACAT2 와 Microsomal triglyceride transfer protein (MTP)의 발현이 감소되었다 (J. Lipid Res. 42:725-734, 2001).

심혈관질환에 관련된 마커 단백질을 발굴하려면 기존의 개별 유전자 발굴을 위한 전통적인 방법에서 탈피하여 지노믹스와 프로테오믹스의 기법을 연계한 실험 방법을 도입하여 동맥경화와 고혈압에 관련된 마커 단백질들의 대량 분석과 스크리닝이 요구된다. 본 연구팀은 이미 고혈압이 유발된 마우스의 혈액을 이용한 분석을 통한 예비 실험을 수행하여 프로테오믹스가 유용한 실험기법으로 쓰일 수 있음을 확인하였고, 선행연구결과에서 밝혀진 주요성 성분효과를 보인 의약후보물질을 대상으로 프로테오믹스를 이용한 심혈관질환 약물발굴에 성공적인 결과를 도출하려 하였다.
현재까지의 동맥경화에 대한 연구 방향은 ox-LDL과 내피세포와의 상관관계 연구가 그 주중을 이루고 있다. 하지만 내피세포나 macrophage에 의하여 자극을 받는다고 알려진 VSMC로 동맥경화증의 시작과 진행에 중요한 위치를 차지하고 있다. 실험동물에 의하여 확인된 바에 의하면, 동맥경화증의 초기인 lesion 형성은 1) VSMC 세포와 lymphocyte의 proliferation이 유도되고, 2) VSMC 세포는 elastic fiber와 콜라겐, 당관백질로 구성된 결제조직(-connective tissue matrix)을 형성하고, 3) 지질과 콜레스테롤이 주위 matrix와 관련 세포들에 촉매되는 과정을 거쳐면서 이루어진다. 또한 동맥경화증의 중기에 fibrous lesion을 이루는 결제조직의 주요 구성원이 proliferation 자극에 의하여 숫자가 늘고 유도물질에 의하여 혈관의 media에서 intima로 이동한 VSMC 세포라는 점이다.(Ross R, Cell, 1993).

VSMC 세포의 종류는 myosin의 분포와 Golgi, rER 같은 세포내 소기관의 양에 의하여 크게 contractile phenotype과 synthetic state로 구분이 된다. 동맥경화증의 lesion에 존재하는 VSMC의 종류는 원래 혈관의 수축과 확장에 관여하는 ET(endothelin)나 AngII, PGE2 등에 반응하는 contractile이지만 자극을 받아서 동맥경화에 참여하는 VSMC의 종류는 PDGF나 FGF등의 성장인자와 cytokine을 생성하고 autocrine으로 반응하는 synthetic으로 바뀐다. 여기서 반드시 유념해야할 점은 자극을 받게 되는 VSMC는 세포가 위치하는 지역에 따라서 다양한 반응을 보이게 되는데, 그 이유는 각각의 기관의 유세포조직(parenchyma)에서부터 성장 및 발전되기 때문이다.

심근경색, 뇌경색, 고혈압 등과 같은 심장순환기 질환을 초래하는 동맥경화는 다양한 요인들에 의해 유발되는데, 특히 LDL 식단가 동맥경화를 일으키는 중요한 요인으로 알려져 있다. 따라서 천연물로부터 LDL항산화 활성을 나타내는 물질을 탐색하여 활성물질의 분리, 규명 및 유도체를 합성하고자 한다. 폐노산 화합물은 다양한 식물균에 천연물 혹은 이차대사산물 형태로 들어있는데 고지혈증, 고혈압 및 동맥경화증 등과 같은 심혈관질환과 관련있는 항산화 효능이 있는 것으로 알려져 있다. 파일 야채를 많이 섭취하는 계층에서 동맥경화증 등의 심혈관 질환의 발생 빈도가 낮은 것은 폐노산 화합물이 섭취와 밀접한 관계가 있을 것으로 짐작이 된다. 허드록시산 산화산은 분자가 매우 작기 때문에 생체 내에서 쉽게 박으로 배출된다. 따라서 허드록시산 산화산의 생리활성을 유지하기 위해서 생체 내에서 오래 머무는 시간을 증가시킬 필요가 있다. 본 연구에서는 항산화 효능이 있는 폐노산 화합물을 모傑으로해서 생체 내에서의 활성이 증대된 신규 유도체를 합성하고자 한다.
제 2 절 연구개발 목표 및 내용

심혈관질환에 관련된 약물표적을 발굴하려면 기존의 개별 유전자 발굴을 위한 전통적인 방법에서 탈피하여 조노믹스와 프로테오믹스의 기법을 연계한 실험 방법을 도입하여 동맥경화가 고혈압에 관련된 마커 단백질들의 대량 분석과 스크리닝이 요구된다. 본 연구팀은 선행연구를 통해 확보한 생체내에서 동맥경화 억제 효과를 나타내는 의약추보물질이 어떤 표적인가에 작용하는지를 연구함으로써 분자 수준에서의 약리작용을 규명하고, 단백질의 기능 또는 활성을 조절할 수 있는 물질을 유전자 수준에서 탐색함으로써 심혈관질환의 발병 원인 규명 및 치료에 근본적으로 접근하고자 한다.

○ 최종 목표 : 동물모델과 세포모델에서 프로테오믹스를 이용한 심혈관 질환의 약물표적 발굴 및 기능 연구

<table>
<thead>
<tr>
<th>연구 분야</th>
<th>연구 내용 및 범위</th>
</tr>
</thead>
<tbody>
<tr>
<td>프로테오믹스를 이용한 타겟 단백질 발굴 및 심장순환기질환 관련유전자 발현의 역제물질 탐색</td>
<td>- 질환동물모델에서의 프로테오믹스 분석
- 질환동물모델 및 약물효과물질의 분리 후 각 장기별 (liver, serum 등) 프로테오믹스 분석
- 동물모델에서 탐색된 단백질에 대한 인간 유사 유전자 탐색</td>
</tr>
<tr>
<td>동물모델에서 의약추보물질의 작용점 발굴 및 Marker 단백질 발현변화 연구</td>
<td>- 질환동물모델의 각 장기별 (liver, serum 등) 프로테오믹스 분석과 정상 동물모델의 각 data와의 비교 분석
- 의약추보물질 처리에 의한 각 장기에서의 marker 단백질 발현의 증감 여부와 발현에 미치는 영향 분석
- 각 장기에서 기존에 알려진 동맥경화 표적물질의 분석
- 의약추보물질이 Adipokine의 기능에 미치는 영향분석</td>
</tr>
<tr>
<td>세포 모델 시스템을 이용한 의약추보물질의 작용점 기능 연구</td>
<td>- 세포 모델에서의 marker 단백질의 발현 분석
- 평활근세포 증식 억제물질 탐색 기초 연구</td>
</tr>
<tr>
<td>심혈관질환 의약신토모질 탐색</td>
<td>- 의약신토모질 유도체의 약리활성 검색
- Human ACAT-1과 ACAT-2 저해제 탐색
- LDL-Antioxidant 탐색</td>
</tr>
</tbody>
</table>
제 2 장 국내외 기술개발 현황

국외에서 1995년에 Marc Wilkins가 proteome이라는 개념을 처음 도입한 이후 전노믹스의 급격한 발전에 따라 프로테움 연구가 활기를 띠고있는데 프로테움 연구는 민간 기업이 연구를 주도하는 미국과 달리 호주에서는 APAF가, 스위스에서는 SWI, 그리고 덴마크에서는 Danish Centre for Human Genome Research등 국책연구 센터를 설립하여 이 분야의 연구를 선도하고 있으며 호주의 APAF는 호주정부의 지원으로 국가연구소로 발전하였으며, 독일 연방교육연구부(BMBF)는 3년동안 7500억을 투입하여 48개 연구팀이 참여하는 9개의 연구 프로젝트를 선정하였는데 이는 프로테움 분석이 생명과학 분야에 독일의 국제 경쟁력을 강화하는데 중요한 전제가 된다고 보고 이들 연구비를 투자해 프로테움 기능 연구와 새로운 분석법의 개발 바이오인포메틱스 도구개발을 지원하고 있다. 이는 독일 국립기능연구센터워크의 일부로서 프로테움을 체계적으로 분석할 혁신적인 핵심 기술의 개발을 목표로 한 이번 연구는 대화와 연구기관은 물론 기업이 함께 참여해 기술 이전과 연구결과의 신속한 유통을 도모하고 있다.

<table>
<thead>
<tr>
<th>제휴 기업</th>
<th>연구비(만$)</th>
<th>연구내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myriad, Hitachi, Oracle</td>
<td>18,500</td>
<td>전체 프로테움 지도 작성</td>
</tr>
<tr>
<td>Applera, Washington대학, Geneva대학</td>
<td>N/A</td>
<td>분석기기 및 기술개발</td>
</tr>
<tr>
<td>Proteome consortium (Michigan 대학)</td>
<td>1,200</td>
<td>단백질 분리 및 확인</td>
</tr>
<tr>
<td>BioMericx-Pierre Fabre, CNRS, 기타 프랑스 대학들</td>
<td>N/A</td>
<td>양관련 의약주요 타겟 발굴</td>
</tr>
<tr>
<td>Centre for Proteome Analysis (Denmark)</td>
<td>N/A</td>
<td>치료제 개발 및 진단기술 개발</td>
</tr>
<tr>
<td>Celera Genomics, Compaq, Sandia Natl. Lab.</td>
<td>1,000</td>
<td>프로테오틱스 관련 컴퓨터 시스템 구축</td>
</tr>
<tr>
<td>Pfizer, Oxford GlycoSciences (OSG)</td>
<td>N/A</td>
<td>관절염과 알츠하이머병 관련 연구</td>
</tr>
<tr>
<td>Novartis, Myriad</td>
<td>N/A</td>
<td>신체관절 질환</td>
</tr>
<tr>
<td>Curagen, Biogen, Genentech</td>
<td>N/A</td>
<td>단백질 기능 관련 연구</td>
</tr>
<tr>
<td>Medarex, OSG</td>
<td>N/A</td>
<td>암 및 기타질환 관련연구</td>
</tr>
<tr>
<td>Bayer, OSG</td>
<td>N/A</td>
<td>호흡기 질환 관련연구</td>
</tr>
<tr>
<td>M-phasys, Graffinity</td>
<td>N/A</td>
<td>신호 전달 체계 관련 연구</td>
</tr>
<tr>
<td>Novartis, Cubist</td>
<td>N/A</td>
<td>감염 질환 관련연구</td>
</tr>
</tbody>
</table>
a) 독일 프로테오믹스 컨소시엄 본격 가동: 박스폴랑크 생화학연구소(Max-Planck Insititut fuer Biochemie)는 10월 7일 독일의 연구소와 대학, 기업의 프로테옴 전문가들로 구성된 프로테오믹스 컨소시엄(Proteomics-Konsortium)이 연방 교육연구부(BMBF)로부터 1,080만 마르크(한화 약 65억원)를 지원받아 본격적인 활동에 나선다고 발표했다. 이 컨소시엄은 세계적인 프로테오믹스 전문가로 알려진 이 연구소의 단백질 분석장 로트스파이히(Lottspeich) 박사에 의해 주도되고 있다. 여기에는 퀘혼대학과 마인츠대학, 환경과 보건연구센터(GSF: Forschungszentrum fuer Umwelt und Gesundheit), 그리고 Biomax, Informatics, Definiens, Toplab, Wilex 등 기업이 참여하고 있다. 프로테오믹스 컨소시엄은 생화학과 의학, 컴퓨터 등 관련 분야의 전문가들이 공동으로 학계적인 연구개발작업을 벌이고 있는데, 다음 3가지 분야를 중점적으로 다루고 있다:

i) 새로운 조직학적방법의 개발: 우수한 특성을 지닌 모델 쥐에서 조직을 채취, 자동적으로 종양세포와 비종양세포를 구분하여 건강한 조직만을 확보하는 기술을 개발한다.

ii) 2D-Gel-전기영동방법(electrophoresis)을 이용한 질량분석법(massspectrometry)과 크로마토그래피(chromatography)의 개발: 단백질 분석전문가와 화학 및 생물정보학 전문가들이 공동으로 전기영동방법의 보완과 개량에 필요한 새로운 질량분석법 및 크로마토그래피 개발을 목적으로 한다. 이 외에 새로운 설계의 분석소프트웨어의 개발과 자동평가시스템을 통해 기존의 기술을 고속화하는 프로젝트도 추진된다.

iii) 신장암 환자의 종양조직과 정상조직 수집 및 분석: 임상 전문가들 중심으로 신장암 환자의 조직을 수집, 컨소시엄에서 개발한 고속대량 프로테움분석 플랫폼(high-throughput-platform)을 이용해 다양한 암종양을 세부적으로 정밀 분류하는 한편 이에 따른 새로운 진단 및 치료 표지와 새로운 치료목표를 결정한다.

b) 리버스 프로테오믹스 연구소 설립: 아지노모토, 스미토모(住友화학, 대일본(大日
\(\text{本)계약, 추가계약(中外製薬, 메이진(帝人, 난온 신약(日本新薬), 히타치 화성공업
\(\text{日立化成工業), 히타치 제조소(日立製作所), 후지사와(藤澤)약품, 모치다 제약(持田製
\(\text{薬) 등 10개사는 21일, cDNA 복제품(clone)으로부터 발현된 단백질과 격분자화 함몰
\(\text{(전형적인 대표적 의약품)과의 상호작용을 전반적으로 연구하는 '리버스 프로테오믹스
\(\text{스 연구소' (약칭 REPRORD)를 설립한다고 발표했다. 이번 설립되며 신연구소가 새로운
\(\text{표적단백질이 발견하고, 이를 신약으로 연결시킬 수 있을 것으로 기대하고 있다. 경제
\(\text{산업은 이러한 전체 cDNA 복제품의 염기 배열을 결정해 데이터베이스화 하
\(\text{는 한편, NEDO(신에너지산업기술 종합개발기구 사)가 수탁 기업을 공모하는 형태로

- 8 -
전체 cDNA 복제품으로부터 단백질을 발현시킬 계획을 진행하고 있다. 발현된 단백질은 산업기술중합연구소의 생물정보학연구센터에 연구자료로 제공된다. 이번 신설 연구소도 발현된 단백질을 제공받아 연구를 진행한다.

국내에도 프로테오믹스에 대한 관심도가 매우 높아 일부 국외과제(과기부의 21C 프론트리어사업 등)와 산학협동연구를 통하여 시범적으로 진행 중에 있다. 2D gel 분석부터 MALDI-TOF 및 Mass 분석 시설이 어느 정도 갖추어진 곳은 한국생명공학연구원, 연세대학교의 프로테오믹스센터, 기초과학지원센터, 전남대학교 등 전국적으로 5~6 군데 정도이며, 산업자원부에서도 국책 프로테오믹스 센터의 설립을 기획하고 있다. 이미 미국과 일본은 정부와 기업체가 협동으로 “프로테오믹스센터”를 설립하거나 설립 중이 있으며 일찍이 국내에서도 올해중 시작할 경우 4년전에 시작한 호주의 APAP 등에 비해 그리 늦은 편은 아니다.

국내의 프로테오믹스연구는 이제 출발선상에 놓여 있으며 이제 체계적인 프로테오믹스 DB를 구축하려는 시도가 있으며, 기반기술을 개발하여 기반기술이 어느 정도 확립되어 가고있다. 프로테오믹스 연구의 가장 기본이라 할 수 있는 2D 전기영동법은 뿌듯 연구실에서 상당한 수준에 이르렀다고 볼 수 있으나 프로테오믹스를 가능할 정도의 2D 조건 확립에 다가선 연구실은 많이 없는 실정이다. 그러나 전기영동 젤토토버의 단백질을 회수하고 이를 단백질 분해효소를 이용하여 절단하고, 질량 분석기를 이용해 분석하는 단백질의 평가프로러닝 기술과 미치의 단백질 분석에 필요한 병렬 질량분석법에 이르기까지 단백질 특성 분석 개발에 있어서는 비교적 높은 수준이나 HT 분석을 위하여 기술적약을 통한 자동화와 표준화가 요구된다. 우리나라는 기초생물학 관련 우수 전문인력이 풍부하며, 이 분야의 커다란 잠재성에 비하여 현재의 연구성과가 미미하므로 국내에서도 시급한 투자가 이루어져야 지노믹스를 이용한 연구의 산업화에 관건이 되는 프로테오믹스에서의 결실이 가능하다.

2001년 2월 인간 지놈 프로젝트 결과가 발표된 이후 우리나라는 이 계획에 참여하지 못한 관계로 인간 지놈 정보이용에 비용을 지불해야 하는 처지이다. 하지만 이러한 계획에 포스트 지놈연구의 총대인 프로테오믹스 연구에 투자하여 지놈 정보를 이용하여 궁극적인 생체이용 기술에서 체계적인 경영성을 갖출 수 있다. 프로테오믹스는 기술 기반성이 높고 새로운 경영성이 확보될 수 있으며, 우리의 우수한 제편인력을 이용해 이 분야에 집중 투자하여 국내연구자들의 연구를 촉진시켜 나가면 2~3년내 선진국과 동일한 수준에서 연구를 수행할 수 있다. 프로테오믹스는 다양한 적용성과 HTS 방식의 하이브리드 우리의 경영을 이용한다면 체계적으로 기술적인 우위에 설 수 있다.
프로테오믹스의 차동화는 전 세계적으로 추진되는 과제로 국내에서도 기계산업과 로봇 산업에 함께 투자하면 충분히 경쟁력을 갖출 수 있다. 프로테오믹스의 전 분야는 개발 중에 있는 판계로 어느 한 국가가 독점적인 지위에 있지 않다. 프로테오믹스 인포테믹스는 스위스의 SIB가 앞서가고 있지만, 우리나라의 우수한 컴퓨터 소프트웨어 기술 인력을 집결시키면 충분히 선진국 수준에 근접할 수 있다. 다른 국가에서 활발하게 추진되지 않는 농림, 수산, 임업 분야에 프로테오믹스를 적용하면 경쟁력이 있을 것이다. 생물 정보학 인프라 구축, 지노믹스 분야 발전 추진과 경쟁력있는 국가과학 발굴 및 연구수행을 통해 국적 경쟁력의 확보가 가능하다.

우리 몸의 발달에 필수적인 지단백질 혈액내의 농도가 너무 높아지면 고지혈증을 유발하게 되고, 연이어서 동맥경화증의 원인을 제공하게 된다. LDL의 농도가 높은 고지혈 상태가 되면, 혈액내의 LDL은 혈관내의 intima로 높은 steady-state로 이동하게 된다. 이렇게 intima로 이동된 LDL은 아래에 열거한 일련의 사건을 거치면서 동맥경화증을 유발하게 된다. 동맥경화증은 5년 전반 해도 대부분의 임상의사들이 혈관에 노폐물이 축적되는 단순한 문제로만 생각을 했었지만, 현재는 ox-LDL에 의하여 내피세포에 유도되는 염증반응(inflammation)에 의한 문제로 시각이 바뀌었다(Libby P, Scientific American, 2002). 동맥경화의 시점은 혈관에 생기는 물리적인 자극이 나, 고농도의 homocysteine, 면역성 물질이나 독소에 의하여 내피세포에 "injury"가 주어지는 것이다. 이러한 자극들에 의하여 내피세포는 이상 증상을 보여주게 되며, 분비된 cytokine에 의하여 macrophage가 혈관에서 intima로 유인되어 이동되고, 이동된 macrophage 세포내로 ox-LDL이 흡수되어 콜레스테롤 성분이 축적되게 된다. 이러한 내피세포의 자극원으로서는 LDL이 산화되어 변성된 ox-LDL이 될 수도 있다. 내피세포 injury에 대한 동맥경화 fibrous lesion 형성이 동상의 wound healing과 다른 점은 결제조직의 주요분이 VSMC 세포라는 점과 injury가 만성적으로 존재한다는 사실이다(Ross R, New Eng J Med. 1999).

혈관벽내에 plaque 형성과 과열이 심근경색 발생에 주요한 요인이며, 동맥경화는 혈관벽의 손상에 대한 만성 염증과정이며 손상기작보다는 오히려 방어기작으로 계시되고 있다. 최근에는 동맥경화(atherosclerosis)를 inflammatory and sclerosing arterial disease (ISAD)로 명명해야하는 것이 옳다는 제안도 나오고 있다. Chemotactic factor의 발현, adhesion molecules의 발현, TNF-α의 발현, 대식세포화, SMCs의 death, SMC의 중심 등에 대한 연구가 진행되고 있다. 정상적인 native LDL은 세포내에서 cholesterol 함성을 조절하는 역할을 하는데 이것이 산화 변형되어 Ox-LDL로 되면 동맥경화 발생의 원인이 되고 동맥경화를 더욱 악화시키기도 한다. 처음 LDL이 산화되
는 동안 최소한으로 변형된 LDL(MM-LDL)은 subendothelial space를 형성한다. MM-LDL은 내피에 격착된 MCP-1과 macrophage colony-stimulation factor(M-CSF)의 분비를 유도한다. 이것은 M-CSF가 조직 macrophage의 증식을 촉진시키고 macrophage는 MM-LDL을 더욱 상각시켜 Ox-LDL은 더 이상 LDL receptor에 인식되지 않고 그 대신 monocyte-macrophage의 scavenger receptor에 포착되어 세포내의 콜레스테롤 함량을 조절하려 못하게 된다. 따라서 macrophage내에 cholesterol이 촉적되어 foam cell을 형성하게 된다. ox-LDL은 내피세포를 자극하여 cytokine을 분비하게 만들고 ox-LDL이 macrophage에 흡수, 촉적되는 현상을 촉진시킨다. 이런 현상이 진행되면서 혈관벽에 fatty streak이 생성되게 된다. Fatty streak은 macrophage에 콜레스테롤이 촉적되어서 생성하는 foam cell이 T-lymphocyte와 VSMC와 같이 섭입으로서 생성하는 현상이다. 이와 함께 ox-LDL은 macrophage에 ox-LDL을 흡수하는 수용체의 발현도 증가시키는 fovy streak이 더 많이 생성하게 한다. 또한, ox-LDL은 intima에서 fatty streak의 주요 구성원인 VSMC와 macrophage의 증식을 유도하기도 한다(Steinberg D, J Biol Chem, 1997). Probuco이나 N,N’-diphenylenediamine과 BHT와 같은 antioxidants은 산화징을 억제시키고 췌장형성영역을 감소시켰으나, 부작용이 따라 사용이 제한되고 있다. 따라서 유기합성 항산화제와 비교하여 “generally recognized as safe(GRAS)”로 평가되는 α-tocopherol, β-carotene, ascorbic acid과 같은 천연 항산화제가 관심을 끌면서, 부작용과 독성을 줄이기 위해 천연물 유래 항산화제의 대사산물과 유도체 개발이 각광을 받고 있다.

히드록시 신산산 또는 그 에스테르는 LDL 항산화, 산화 DNA의 복원, 암세포피사상승작용, 항생효과, 동맥경화 등에 효능이 있는 것으로 알려져 있다. 특히 3,4-디히드록시 신산산의 phenethyl ester는 NF-κB 억제효과를 갖는 것으로 급성 염증, 동맥경화, 암의 치료에 효능이 있는 것으로 보고되고 있다. 그러나 히드록시 히드로신산산의 알킬 나프탈렌 에스테르 화합물의 생체내 생리활성에 대해서는 거의 보고가 되고 있지 않다.

의약후보물질의 효능검정 기술 개발은 신속성과 정확성, 재현성이 요구되는 기술로서 서구의 제약회사를 중심으로 활발히 개발되어 왔다. 기존의 실험방법인 콜레스테롤 혹은 증상방법의 혈증 수치 측정의 한계를 극복하기 위해, 최근에는 전체 지단백질 분획으로부터 각 지단백질의 농도와 크기변화, 아포지단백질의 농도 변화를 측정하여 약리효과의 해석 및 임계적 위험도를 예측하는 연구가 활발히 진행되고 있다.
제 3 장 연구개발수행 내용 및 결과

제 1 절 연구개발수행 내용

1. 결과물모델에서의 각 장기별 프로테임 분석

정상 마우스와 고지혈증이 유발된 마우스의 heart, liver, brain, serum, aorta, adrenal gland의 프로테임 분석을 마쳤고, 기존의 상용화된 약과 본 연구팀에서 개발 중인 선도 물질의 영향을 serum 프로테임 분석을 통하여 분석 완료하였다.

1) 주요시약
- RIPA buffer (1% TritonX-100, 1% deoxycholate, 0.1% SDS, 50mM Tris-HCl, pH 8.5, 150mM NaCl, protease inhibitor) : 세포주를 용해시키기 위해 사용된 완충 용액이다.
- IPG buffer (AmershamParmacia Biotech, cat# 17-6000-87) : IPG strip을 제 수화시키고, pI값에 따라 단백질을 분리 할 때 사용되는 완충액으로 단백질들이 각각의 pI값으로 이동하는데 도움을 준다.
- IPG Immobiline Drystrip (AmershamParmacia Biotech, cat# 17-60 01-14) : 두께 0.5 mm, 길이 13 cm, pH 3~10인 strip으로 단백질을 pI값에 따라 분리 할 때 사용한다.
- IPGphor Cover fluid (AmershamParmacia Biotech, cat# 17-13 35-01) : IPGphor strip 홀더에 IPG strip을 제 수화시키고 pI값에 따라 단백질을 분리할 때 시료의 증 발과 urea의 결정화를 최소화시키기 위해 사용한다.
- Sliver stain system (AmershamParmacia Biotech, cat# 17-1150-01) : SDS-PAGE 젤 상에 존재하는 단백질을 눈으로 확인하기 위해 사용된 염색방법이다.
- Potassium ferricyanide (SIGMA, cat# P-3667) & Sodium thiosulfate (SIGMA, cat# S-7026) : silver 염색된 단백질을 탈색 할 때 사용되는 완충용액으로 silver 염색된 단백질에서 silver를 제거하기 위해 사용한다.
- Ammonium bicarbonate (SIGMA, cat# A-6141) : silver 염색된 단백질을 탈색 할
매 사용되는 시약으로 gel 안에 있는 폼타이드의 결합을 느슨하게 만들어 acetonitrile에 의한 탈수작용을 더 잘 일어나게 도와준다.
- Acetonitrile (ALDRICH, cat# 27,071-7) : gel을 탈수시킨다.
- Trifluoroacetic acid (SIGMA, cat# T-6508) : ZipTip을 씌어 줄 때 사용한다.

2) 주요기기
First dimension
IPGphor Isoelectric focusing unit (Amersham Pharmacia Biotech, cat# 80-6414-02)
IEF electrode strips (Amersham Pharmacia Biotech, cat# 18-10 04-40)
Strip holders for use with Immobiline DryStrip (Amersham Pharmacia Biotech, cat# 80-6416-49)
Second dimension
PROTEAN II xi 2-D system
Power Supply : PowerPac 1000 Power Supply (BIO-RAD, cat# 165-5054 100-120V)
For Mass
MALDI-TOF : Voyager-DE-STR Biospectrometry- Workstation

3) 각각기 조작의 시료준비 : 먼저 조직을 양을 저울로 재 다음 조작 임신량을 갈라내어 50ml tube에 넣는다. 조직을 분쇄하기 위해서 liquid nitrogen에서 완전히 얼린 상태에서 실험을 진행한다. 조직에 일부분 buffer A, inhibitor 1A, 2를 넣고 조작을 잘 섞어서 liquid nitrogen에 담아서 완전히 얼린 상태에서 잘게 부순다. grinder는 liquid nitrogen에 담어서 차갑게 해 사용한다. 잘게 부서진 조작조각을 난각 해놓은 grind에 넣고 간다. 여러번 반복해서 조직을 갈고 난각 해놓은 spatula를 사용해서 부서진 가루를 tube에 옮긴다. 이 과정에서 grinder에 남아있는 것을들을 남은 buffer를 이용해서 모른다. sonication 10 cycle을 완전히 조작이 깨질 때까지 한다. 50000 rpm 4°C에서 한시간 동안 ultracentrifuge를 한다. 상동액을 -70 °C에 보관하고 침전물을 다시 buffer와 protease inhibitor를 넣어 앞의 과정을 반복하여 상동액은 모으고 다시 침전물을 -70 °C에 보관한다. 좋은 2-DE 결과를 위해 적절한 시료의 준비는 필수적이 다. 시료에서 단백질들은 완전히 수화되어야 하고, 염장이 없어야 하며, 환원상태 이어야 한다. IEF시 문제가 될 수 있는 물질들을 제거하기 위해 40 mM Tris-HCl, pH 7.0 buffer로 4시간 동안 푸석한다.

4) 1차원 전기영동 (1-dimensional isoelectric focusing) : AmershamPharmacia Biotech
의 IPGphor를 1차원 전기영동에 사용하였다. IPGphor 시스템 사용 시 13 cm strip 툴더와 Immobiline Drystrip 커버용액을 사용하였다. 제 수화 장방용액은 최종 농도가 8 M urea, 2% CHAPS, 0.5% IPG 완충액, 2 μl bromophenol blue가 되도록 urea (FW 60.06) 12 g, CHAPS (w/v) 0.5 g, IPG 완충액 125 μl (IPG strip과 동일한 pH 범위의 완충액을 사용한다.), Bromophenol blue 약간을 3차 중류수로 최종 25 ml 맞춘 뒤 25 ml씩 분할하여 -20℃에 보관하였다. 경량이 끝난 시료는 400 μg 을 사용하여 실험하였다. 이때 대조구와 시료가 최대한 동량으로 부하 되어야 2차원 젤 상에서 분리된 단백질의 형태를 비교하고 분석하는데 용이하다.

4-1) IPG strips 제수화 : IEF에 앞서 IPG strip을 IPGphor strip 툴더에서 제수화시킨다. 만들어 놓은 제수화 시약과 경량 된 시료를 잘 섞고, 13000 rpm, 4℃에서 10 분간 원심 분리 후 시료의 양이 있는지 확인한다. Strip은 AmershamPharmacia Biotech제품으로 폭 3 mm, 두께 0.5 mm, 길이 13 cm, pH 3~10을 사용하였다. 세라믹 스트립 툴더는 전 실험 후에 남아있을 단백질을 IPGphor strip 툴더 세정액(cat# 80-6452-78)을 사용하여 제거하고, 3차 중류수로 행군 뒤 완전히 건조시켜 준비하였다. 툴더를 다룰 때는 1회용 비닐 장갑을 반드시 착용하여 캐라틴 등에 의한 오염을 방지하였다. 제 수화 시약과 섞어준 시료를 툴더 중심부분에 부하 하였고, 큰 공기 방응물을 제거하였다. IPG Immobiline Drystrip은 젤 쪽을 부하 된 시료와 접하게 놓았다. IPG strip의 중합과 제 수화 그리고 시약에 포함되어 있는 urea의 결정화를 막기 위해서 IPG 커버용액 3 ml 을 툴더 송 한쪽 끝에서 반대편 쪽으로 부하 하였다. 세라믹 스트립 툴더의 두께를 공기 방응없이 생기지 않도록 덜어주었다. 제 수화는 20℃에서 12시간 실시하였다.

4-2) 등전점에 의한 분리 (isoelectric focusing) : 본 실험에서 IEF는 1000V에서 1시간, 2000V에서 1시간 그리고 8000V에서 8시간 실시하여 총 10시간을 수행하였다.

5) 수적적 2차원 전기영동 시스템
5-1) IPG strip 평형화 : 2차원 전기영동을 위해 사용한 SDS 평형 완충액은 최종 농도가 50 mM Tris-HCl pH 8.8, 6 M urea, 30% glycerol, 2% SDS, bromophenol blue 약간포함이 되도록 1.5 M Tris-HCl (pH 8.8) 6.7 ml, urea (FW 60.06) 72.07 g, glycerol (87% v/v) 69 ml, SDS (FW 288.38) 4.0 g, bromophenol blue(약간)을 3차 중류수로 200 ml까지 맞추고 40 ml씩 분할하여 -20℃ 보관하였고, 사용하기 직전에 DTT 또는 iodoacetamide를 첨가하여 사용하였다. 2차원 전기영동 분리를 위해 등전점
에 의해 분리가 끝난 IPG strip을 SDS-PAGE 완충액과 평형을 맞추어 주는 단계가 필요하다. 평형시약은 저장시약 상태로 보관하였고, 사용하기 전에 DTT을 철저히 사용하였다. DTT가 첨가된 평형 완충액을 준비한 튜브에 넣는데 strip의 갈이에 따라서 평형 완충액의 양을 달리하여, 13 cm IPG strip일 경우 7 ml을 사용하였다. 평형 완충액에 strip을 넣은 후 튜브를 막고 상온에서 20분간 평형화시켰다. 평형화가 끝나고 증류수로 잔류시약을 제거하였다.

5-2) 수작업 2차원 전기영동 시스템: 2차원 전기영동은 BIO-RAD사의 PROTEAN II xi 2-D 시스템을 사용하여 실시하였다. 젤을 만들기 위해 사용된 악세사리는 각각 질 알 유리판 (cat# 165-1823, 20x20 cm), 젤 뒤 유리판 (cat# 165-1824, 22.3x20 cm) 홀 (cat# 165-1897, 1.0 mm), 스페이서 (cat# 165-1848, 1.0 mm), 클립프 (cat# 165-1902, 20 cm), 젤 조립스탠드 (cat# 165-1911)이다. 젤을 만드는데 사용된 시약은 제한성을 위해 30% acrylamide 용액은 BIO-RAD제품을 구입하여 사용하였다. 그 외 1.5 M Tris-HCl pH 8.8, 1 M Tris-HCl pH 7.5, 10% SDS, 10% ammonium persulfate, TEMED는 모두 저장용액 상태로 보관하며 사용하였다. 본 실험에서 젤은 14%를 사용하였다. 젤을 만들 시약은 조림된 젤 유닛 상에서 위로부터 3~10 cm 아래까지 체운 뒤, 젤 표면을 평평하게 하고, 젤 이산소에 노출되는 것을 최소화하기 위해 증류수 또는 포화된 n- , i- , 또는 t-butanol 1 мл을 체워진 젤 시약 위에 첨가 해주었다. 증합반응이 완전하게 이뤄지기 위해 최소 30분 동안 반응시켰다. 분리용 젤이 완성되면 첨가했던 시약 혹은 증류수를 제거하고 준비했던 분리 준비용 젤 시약을 유닛 끝까지 체운 다음 홀을 끄고 SDS-PAGE 젤이 종합반응을 완료할 때까지 약 30분간 반응시켰다.

5-3) IPG strip 부하: strip 고정을 위한 시약은 SDS-PAGE 전기영동 완충액 100 мл, agarose 0.5 g, bromophenol blue trace(약간)를 넣고 상온 보관했다. SDS-PAGE 전기영동 완충액은 최종 농도가 25 mM Tris-HCl, 192 mM glycine, 0.1% SDS,가 되도록 trizma base (FW 121.1) 15.1 g, glycine (FW 75.07) 72.1 g, SDS (FW 288.38) (w/v) 5.0 g을 3차 증류수 5 l에 넣고 후 사용하였다. 평형화가 끝나고 3차 증류수로 세척한 IPG strip은 준비된 SDS-PAGE 전기영동 젤의 흰에 어떠한 공기 방울도 없게끔 플라스틱 플러리를 이용해서 IPG strip 끝이 젤 표면과 접촉할 때까지 아래로 조심스럽게 떨어 없었다. 분자량 마커 단백질은 Coomassie 염색할 때와 silver 염색할 때 부하량이 다른데 silver 염색 시에는 주로 10~50 ng 부하하였다. 본 실험에서는 마커로 prestained SDS-PAGE standards broad range를 젤 한 장당 5 μl씩 사용하였다. 부하
가 끝나면 녹여 둔 agarose 고정시약 1~1.5 mL 정도로 IPG strip을 고정시켰다. 이 때 역시 공기 방울이 생기지 않도록 하였고, agarose를 굽히기 위해 최소 1분간 시간을 두었다. 2차원 전기영동장치 시스템 악세사리에 BIORAD 사의 PowerPac 1000 Power Supply를 사용하였다. 전기영동 유닛의 조립이 끝나면 1X SDS-PAGE 전기영동 완충액을 넣었다. 2차원 전기영동 시에 전류는 두 단계로 나뉘는데, 이동이 시작될 때와 이동준비 기간이다. 본 실험에서는 SDS-PAGE 젤 한 장 당 40 mA로 전기영동 하였으며, 염색액이 젤의 끝에서 1 mm 될 때 전기영동을 중지하였다.

6) Silver 염색 : 젤 상의 단백질을 비교하기 위해 Coomassie brilliant blue 보다 100 배 정도 민감한 nanogram 범위의 단백질까지만 볼 수 있는 silver염색 방법을 사용하였다. 본 실험에서는 AmershamPharmacia Biotech의 silver 염색 시스템을 사용하였다. Silver 염색에 사용되는 모든 시약은 3차 중류수를 이용해 만들었으며, 좀 더 정밀한 결과를 보기 위해 사용 절전에 만들어 사용하였다. 2-D 젤 한 장 당 250 mL 석 반응시약을 준비하였다. 고정시약은 absolute ethanol 100 mL, glacial acetic acid 25 mL을 넣고, 3차 중류수로 최종 부피를 250 mL 맞추였다. 감광제 시약은 absolute ethanol 75 mL, glutardialdehyde (25% w/v) 1.25 mL, sodium thiosulphate (5% w/v) 10 mL, sodium acetate 17 g을 넣고, 3차 중류수로 최종 부피수 250 mL로 맞추었다. silver반응을 위한 시약은 silver nitrate (2.5% w/v) 25 mL, formaldehyde (37% w/v) 0.1 mL을 넣고, 3차 중류수로 최종 부피를 250 mL로 맞추었다. 발색반응시약은 sodium carbonate 6.25 g, formaldehyde (37% w/v) 0.05 mL을 넣고, 3차 중류수로 최종 부피를 250 mL로 맞추었다. Silver반응을 위한 시약과 발색반응시약은 사용하기 전까지 4°C 에서 보관하였다. 반응정지용 시약은 EDTA-Na 2H2O 3.65 g을 넣고, 3차 중류수로 최종 부피를 250 mL로 맞추었다. 2차원 전기영동을 끝낸 젤은 Pyrex 유리 tray에 조심스럽게 옮겨 다음 분리된 단백질의 고정을 위해 젤 한 장 당 고정시약을 250 mL씩 넣고 30분 동안 반응시켰다. 30분 후에 고정시약을 버리고, 단백질 검출의 민감도를 높이기 위한 시약인 감광제 시약을 넣고 30분간 반응시켰다. 감광화 단계 후에 3차 중류수로 5분씩 3회 젤을 세척하였고, 4°C에 보관되었던 silver시약으로 20분 동안 반응시켰다. Silver반응 단계가 끝난 후 3차 중류수로 1분씩 2회 젤을 세척하고 발색에 들어갔다. 발색반응은 2분에서 5분 정도 소요되며, 검출되는 단백질 spot의 퍼런과 표준 분자량 마커의 발색정도를 비교하여 진행하였다. 적절히 발색이 끝나면 반응중지 시약을 체결리 넣어 반응을 중지시켰다.

7) Silver 염색된 단백질의 발색 : MALDI-TOF 분석을 위해 silver로 염색된 단백질
spot의 탈색 단계가 필요하다. MALDI-TOF를 위한 탈색 및 케타이드 경계 과정 모두 잔류시약과 케타이드의 오염을 방지하기 위해 1회용 장갑 (TOP GLOVE SDN. BHD. cat# 2004-08)을 착용하고 진행하였다. 젤에 있는 silver를 제거하는 탈색 시약 혼합물은 30 mM potassium ferricyanide 와 100 mM sodium thiiosulfate를 사용전에 1:1로 섞어 사용하였다. 케타이드 경계 시약은 50% acetonitrile에 trifluoroacetic acid가 5% 되도록 정가하여 사용하였다. trypsin을 제외한 나머지 시약들은 상온에서 보관했으며, trypsin만 -20℃에 보관하였다. 탈색 방법은 Gharahdaghi등의 방법을 변형하여 사용하였다. 우선 정제한 단백질 spot을 결정한 다음 젤에서 spot을 오려낸 뒤, 실리콘으로 처리된 eppendorf tube (Fisherbrand 1.5 ml graduated, flat cap tube-low retention/siliconized, cat# 02-681-320)에 한정으로 넣었다. 탈색시약은 spot이 잠길 정도로 30 μl~50 μl를 정가하였다. 색이 빠질 때까지 완전한 다음 3차 증류수로 3회 세척하였다. 그리고 200 mM ammonium bicarbonate를 50 μl씩 정가한 뒤 20분 동안 반응시켰다. 반응이 끝나면 3차 증류수로 3회 정도 세척해 준 뒤 acetonitrile과의 반응성을 높이기 위해 tip으로 젤을 잘게 잘랐다. Acetonitrile을 50 μl씩 정가한 뒤 젤이 뚜껑에 될 때까지 완전하고 Speed Vac.으로 30분간 젤을 건조시켰다. MALDI-TOF 분석을 위해 5~10 ng/μl trypsin과 50 mM ammonium bicarbonate를 1:1로 섞은 후 반응시약을 만들고, spot당 20μl씩 정가한 후 37℃에서 12시간동안 반응시켰다. Trypsin이 처리된 케타이드의 추출은 50% acetonitrile에 trifluoroacetic acid가 5% 정가된 반응시약을 사용하여 행하였다. trypsin을 처리한 tube에 이 시약을 각 20 μl씩 넣은 후 1분 동안 완전한 다음 실리콘 처리된 새로운 1.5 ml 튜브로 추출액을 옮긴 다음 2회 더 추출하였다. 마지막으로 추출된 케타이드의 능축을 위해 추출액을 Speed Vac.을 이용해 건조시켰다.

8) MALDI-TOF 분석 : MALDI-TOF 결정분석을 위해서 사용된 메트릭스 시약은 a-cyano 4-hydroxycinnamic acid (CHCA)이며, 50% acetonitrile에 trifluoroacetic acid를 0.1% 되도록 녹여 사용하였다. ZipTip은 Millipore Corporation Bedford, MA 01730 USA (cat# ZTC18S960)를 사용하였고, ZipTip과정을 위한 시약들은 쓰기 전에 만들어 사용하였으며, 특히 메트릭스 시약은 사용하기 직전에 만들어 사용하였다. 시료가 10 kDa이하의 케타이드인 경우 메트릭스는 a-cyano 4-hydroxycinnamic acid(CHCA)를 사용하였고, 10 kDa 이상되는 케타이드인 경우에는 sinapinic acid (SAP)을 메트릭스로 사용하였다. 우선 CHCA를 준비한 다음, 50% acetonitrile과 0.1% trifluoroacetic acid에 10 mg/ml이 되도록 섞었다. CHCA 메트릭스 시약은 1주일간 사용이 가능하지만 가능한 한 새롭게 만들어서 사용하였다. ZipTip은 시료에 존재하는 염분을 제거하
고, 시료를 농축하기 위해 사용하였다. ZipTip과정은 1차 세척, ZipTip에 펌타이드 결합, 불순물세척, 펌타이드의 정제 순으로 진행하였다. 1차 세척은 ZipTip을 100% acetonitrile로 3회 이상 세척 한 후에 50% acetonitrile에 trifluoroacetic acid가 0.1% 첨가된 시약으로 3회 이상 세척하고 마지막으로 0.1% trifluoroacetic acid 3회 세척하는 순으로 진행하였다. 펌타이드 결합은 준비된 시료를 10 μl 3차 중류수에 녹인 후 ZipTip과 3~5회에 걸쳐 결합시켰다. ZipTip에 펌타이드 결합시킨 뒤 잔여 불순물은 0.1% trifluoroacetic acid로 10 μl씩 3~5회 정도 세척해서 제거하였다. 마지막으로 미리 만들어 놓은 마트릭스시약 1~1.5 μl로 ZipTip에 결합하고 있는 펌타이드를 결합하였다. 이때 마트릭스 시약에 MS표준 물질 (calmix 2)을 1/4000 정도로 희석 시켜 사용하였다. 이 단계가 끝나면 금속판의 홈에 바로 경계해 난 시료를 떨어뜨리 건조시킨 후 MALDI-TOF를 이용하여 펌타이드 결합 분석지문 결과를 얻었다.

9) 데이터 베이스 검색 : 데이터 베이스는 2-D 젤로 분석한 전형적인 패턴이나 각종 펌타이드 결합 분석지문을 저장하고 이를 기반으로 연구자들이 활용할 수 있게 data로 구축해 놓은 데이터 베이스 시스템이다. MALDI-TOF MS의 결과 얻어진 결합 분석지문의 피크값은 데이터베이스 시스템을 이용하여 상동성이 가장 높은 단백질 후보들 을 검색하는데 이용되었다. 데이터베이스 시스템은 SwissProt을 가장 많이 사용하였다 (http://www.expasy.ch/tools/peptide.html). 결합 분석 지문 피크값은 monoisotopic값을 사용하였으며, MS분석 결합 값의 정확도는 허용 오차 값을 0.1~0.5 Da으로 제한하였고, miscleavage값은 1 로 계산하여 검색하였다. SwissProt 다음으로 자주 사용한 데이터 베이스는 ProFound 이다 (http://129.85.19.192/profound_bin/WebProFound.exe). SwissProt과 마찬가지로 monoisotopic 값을 사용하였다.

2. 동물모델에서의 약효모분석의 작용점 발굴 및 Marker 단백질 발현변화 연구

1) 연구재료의 준비 : 고콜레스테롤혈증을 유발한 Low Density Lipoprotein Receptor knockout 마우스 및 고콜레스테롤혈증을 유발한 토끼를 실험에 사용한다. 대조군, 마우스 두여군으로 나누고 8 주간 고콜레스테롤 식이를 실시하면서 시료를 두여한 후 흉부시 경계 심장 및 오름타액맥부 흉부대동맥까지 절개하여 포르말린에 고정한다. 대동맥의 동결절편을 얻어 슬라이드를 제작하여 내피대동맥부 ilioc bifurcation 부위가 longitudinal하게 절개하여 sudan IV를 이용하여 지방염색을 실시한다. 또한 일부는 파라핀 block을 제작하여 면역염색에 사용한다.
2) 대동맥공에 형성된 측상경화반의 확인 및 면적 측정: 절제된 심장과 오름대동맥의 일부를 1시간 정도 생리식염수에 방치하여 심근 및 혈관 평활근을 이완시킨 후 4% 포르말린이 함유된 생리식염수에서 48시간동안 고정한다. 고정된 심장을 5% gelatin에서 2.5시간, 10%에서 2.5시간, 25% gelatin에서 12시간 방치한 뒤 4℃에서 경화시킨다. 경화된 심장을 면도강로 잘 trimming한 뒤 OCT compound에 embedding하여 deep freezer에서 동결시킨 후 대동맥공을 동결절편기로 10μm의 두께로 잘라 슬라이드를 제작한다. 지방염색을 위하여 슬라이드를 중류수에 담았다가 50% 에탄올에 1-2분 담근 다음 포화 sudan IV 용액에서 30분간 염색한 후 50% 에탄올로 세척하고 hematoxylin으로 대조염색을 실시한 후 수성 봉입제로 봉입하여 광학현미경으로 관찰한다. 측상경화반의 면적은 카데라가 달린 Nikon-FX Ag 광학현미경을 사용하여 현미경상을 모니터에 나타낸 후 image measure soft ware를 이용하여 면적을 측정하여 평가한다.

토끼의 대동맥공에 형성된 측상경화반의 확인 및 면적 측정은 심장과 오름대동맥의 일부를 고정 후 잘 trimming한 뒤 OCT compound에 embedding하여 deep freezer에서 동결시킨 후 대동맥공을 동결절편기로 10μm의 두께로 잘라 슬라이드를 제작하였다. 측상경화반의 면적은 image measure soft ware를 이용하여 면적을 측정하여 평가하였다.

토끼의 대동맥 전체에 형성된 측상경화반의 관찰은 Aortic arch 부위부터 iliac bifurcation까지의 대동맥을 절제하여 미세가위로 절개하여 혈관 내벽을 노출시킨 다음, 포르말린 위에 둔적에서 고정한 뒤 포화 sudan IV 용액에서 염색하여 해부현미경상에서 관찰하였다.

3) 동맥경화 관련 유전자 발현 분석: 흙대동맥으로부터 RNA를 분리하여 동맥경화와 관련이 높은 세포부착에 관련되는 유전자들의 발현을 분석하였다. TRIZOL reagent를 이용하여 분리한 RNA를 1% Agarose gel에 전기영동한 후 아미삼의 Hybond-H+ 나이론 membrane에 transfer하여 northern blot으로 발현조절여부를 분석하였다. 분석을 위한 probe로는 Fruebis 등이 사용한 VCAM-1 cDNA 유전자를 특이적으로 증폭시키는 primer를 이용하여 PCR로 증폭시켜서 사용하였다.

4) 동물혈청의 지단백질 및 콜레스테롤, 증명지방 프로필 분석: 유의적인 효능을 보인 실험군의 혈장을 수집하여 콜레스테롤 농도와 HDL-콜레스테롤 농도, 증명지방의 농도를 측정하고 (Sigma Kit 사용), KBr로 밀도를 조정한 후 72시간의 초원심분리로 통해 VLDL, LDL, HDL의 순으로 지단백질을 분리하여, 산화가 억제된 조건하에서 전
체 아포알단백질의 농도와 콜레스테롤농도를 정량하고, 병행실험으로 대조군의 혈장을 같은 방법으로 측정하여 비교한다.

5) 저단백질간의 크기 비교 (VLDL, LDL, HDL) : 각각 분리된 대조군과 실험군의 VLDL, LDL, HDL을 1.5% agarose gel에 적응하여 일정 전압으로 전개시킨 후 gel을 건조하여 coomassie blue로 염색하여 이동성의 차이를 비교한다.

7) HDL 입자를 구성하는 apoA-I의 분자비 비교 : apoA-I은 HDL을 구성하는 대표단백질이며, 동맥경화가 진행되면서 HDL 입자를 구성하는 apoA-I의 개수가 감소하는 것으로 보고된 바 있다. 따라서 본 연구에서는 이러한 기작을 확인하기 위해 대조군과 실험군의 HDL에 crosslinker인 BS3 (Bissulfosuccinimidyl suberate)를 적응한 후, SDS-PAGE로 반응물을 분리하여 HDL 입자당 apoA-I의 수를 비교한다.

3. 세포 모델에서의 marker 단백질의 발현 분석 (LDL에 의한 혈관 근육세포 성장 및 작용기전 연구)

LDL와 혈관 근육세포의 반응을 세포 성장 및 염증 유발인자의 발현 검출에 맞추어서 실험하였다. 실험에 사용된 native LDL은 인간의 혈액에서 분리하여 사용하였고, 세포 성장의 관찰은 발색 반응을 이용하여 세포에서의 성장성 있게 용이하게 수행하였다. 염증단백의 검출에는 기존에 잘 알려진 여러 종류의 pro-inflammatory cytokine (IL-6, IL-8 등)의 Northern 과 Western 및 ELISA 방법을 사용하였다.

1) Cell proliferation assay : hVSMC의 증식효과(proliferation)를 확인하기 위해, 약 5 X 10^3 cell/well이 배양된 96 well plate (100 µl/well)에 LDL 또는 inhibitor와 LDL과 inhibitor를 동시에 처리한 cell proliferation reagent인 WST-1 (Roche Applied Science, Germany)을 10 µl씩 분주한 다음 37°C incubator에서 45 분 배양 후 ELISA
reader를 이용하여 450 nm와 650 nm (blank)에서 흡광도를 측정하였다.

2) Western blot analysis: Total cell lysate를 10% SDS-PAGE gel에서 전기하고 nitrocellulose membrane에 transfer하였다. Protein이 transfer된 membrane을 5% skim milk (in TBST)로 상온에서 한시간 동안 blocking하고, phosphorylated Erk 1/2 MAPK와 phosphorylated p38 MAPK에 대한 1차 antibody (Cell signaling, USA)와 anti-mouse IgG(HRP-linked antibody), anti-rabbit IgG(HRP-linked)의 2차 antibody (Amersham Pharmacia Biotech, Sweden)로 반응 후 ECL kit(Amersham Pharmacia Biotech, Sweden)를 사용하여 MAPK의 활성을 판찰하였다. 이와 동시에 VSMC에 specific한 α-actin의 분석을 통하여, 실험에 사용된 단백질 양이 동일함을 확인하는 normalization 실험을 수행하였다.

3) IL-8의 정량 분석: IL-8의 정량 분석을 위해 ELISA kit (OptEIA™, BD Bioscience, USA)을 사용하였다. LDL 및 다양한 inhibitor를 처리한 배양액을 IL-8 antibody가 coating된 well에 100 μl씩 냉고 상온에서 2 시간 반응한 다음, wash buffer로 5회 세척하였다. 배양액 내의 IL-8이 결합된 각 well에 biotinylated IL-8 antibody와 horseradish peroxidase conjugated Avidin을 포함하는 working detector 용액을 100 μl씩 넣고 다시 상온에서 1 시간 반응하였다. Washing buffer로 8회 세척 후 기질 용액 (3',5',5'-tetramethylbenzidine, TMB) 50 μl을 넣고 약 30 분 반응 후, ELISA reader를 이용하여 450 nm에서 흡광도를 측정하였다. 동일 조건에서 standard IL-8을 희석 후 성장 분석하여 표준 곡선으로 이용하였다.

4) 혈관관절환 세포의 분리: rat aorta를 분리한 후 DMEM 배지에 넣는다. 혈관을 PBS로 세척한 다음 periadventitia를 제거한다. Aorta를 enzyme mixture (collagenase, elastase, soybean trypsin inhibitor)와 37℃에서 반응시킨 다음 adventitia를 분리한다. 혈관의 media층을 자른 후 enzyme mixture에서 배양한다. Enzyme에 의한 digestion이 되었으면 세포를 원심분리로 분리한다. 분리한 세포를 DMEM 10% FBS에 resuspend 한 후 tissue culture flask에 넣고 CO2 incubator에서 배양한다.

4. 실험결과 및 의의

1) 화합물 합성: 4-히드로시산성, caffeic acid 등 폐혈관성의 유도체는 LDL 항산화 효능 등 여러 가지 생리활성이 있는 것으로 보고되고 있다. 본 연구에서는 이들 폐
늘산의 이중결합이 환원된 형태인 4-hydroxyhydrocinnamic acid, 3,4-dihydroxyhydrocinnamic acid의 naphthalenic alkyl 에스테르 유도체를 합성하고 악호감색을 하고자 한다. 히드록시 히드로산남산의 에스테르 화합물은 히드록시 히드로산남산과 나프탈렌 알킬 알칼 혹은 할라이드 오로부터 제조되었는데, 사용되는 반응 물의 특성에 따라 제조방법을 달리하였다. 반응물질로 나프탈렌 알킬 알칼이 사용될 때에는 에스테르 화합물을 triphenylphosphine, diethyl azodicarboxylate 존재하에 히드 루시 히드로산남산의 촉합 반응 시켜 제조되었는데, 이때 사용된 반응 용매는 THF이고 상온에서 12 시간의 반응시간이 필요하였다. 반응물질로 나프탈렌 알킬 플로냅라이 드가 사용되었을 때에는 NaHCO₃, KI 존재하여 80°C의 DMF 용매에서 히드록시 히 드로산남산과 가열촉매하여 에스테르 화합물이 제조되었다.

2) 알킬 알칼이 반응물로 사용될 때의 에스테르 제조방법(3,4-dihydroxyhydrocinnamic acid 2-naphthalenemethyl ester의 합성) : 3,4-dihydroxyhydrocinnamic acid (2.0 g, 10.9 mmol), 2-naphthalenemethanol (1.74 g, 10.9 mmol), triphenylphosphine (3.17g, 12.1 mmol)을 THF (30 mL)에 녹인 후 여기에 상온에서 diethyl azodicarboxylate (1.9 mL, 12.1 mmol)을 가한다. 반응 혼합물을 상온에서 12 시간동안 교반 후 감압하에 용 매를 제거하고 전사를 실리카겔 컬럼 크로마토그래피 하여 목적 화합물을 얻었다.

3) 알킬 할라이드가 반응물로 사용될 때의 에스테르 제조방법 (3,4-dihydroxyhydrocinnamic acid 1-naphthalenemethyl ester의 합성) : 3,4-dihydroxyhydrocinnamic acid (2.0 g, 10.9 mmol), 1-(chloromethyl)naphthalene(1.94 g, 10.9 mmol), KI (2 g, 12.0 mmol), NaHCO₃ (1.4 g, 16.6 mmol)을 20 mL의 DMF 농고 3시간동안 가열, 교반시킨다. 반응혼합물을 식현 후 물을 넣고 에틸 아세테이트로 추출하여 물과 소금물로 셋이준 뒤 무수 청산 마그 네슘으로 진조시켜 목적화합물을 얻었다.

5. 심혈관질환 의약소도물질 탐색

1) 사람 혈장으로부터 초원심분리기를 이용하여 LDL의 분리 : 혈액원에서 가져온 plasma에 0.04% EDTA, 0.05% NaCl의 0.015% PMSF를 넣어 plasma에 있는 지산백질의 변성을 막는다. 100,000 g, 4°C에서 20 시간 동안 초원심분리한다. Top layer에는 있는 chylomicron과 VLDL을 겹여내고 다음과 같은 식에 의해 NaBr(heavy density solution)을 이용해서 밀도를 1.063 g/ml로 맞춘다. 다시 100,000 g, 4°C에서 24 시간동
안초원심분리한 후 yellow top layer에 분리된 LDL을 겉어냈다. 이 LDL을 10 mM, pH 7.4 phosphate-buffered saline(PBS)으로 투석하여 고농도의 NaBr를 제거하고, 4℃에서 보관하면서 약 5 주간 사용하였다.

\[V_2 = V_1 \times \frac{D - D_1}{D_2 - D} \]

\(V_2 \): volume of heavy density solution
\(V_1 \): initial volume of solution
\(D \): required density(1.063)
\(D_1 \): original density
\(D_2 \): density of heavy solution(1.04)

2) TBA method에 의한 LDL oxidation의 분석: Cu²⁺-mediated LDL-oxaation을 유발시키고 이에 생성된 블포화지방산의 산화산물인 dialdehyde를 TBA(thiobarbituric acid)법으로 측정하였다. 향산화 활성을 측정하고자 하는 합성시료를 DMSO를 이용하여 적당한 농도로 용해하였다. 시료용액 10 \(\mu l \), 사물의 혈액으로부터 초음분리기를 이용해 분리한 LDL 50 \(\mu l \)(50-100 \(\mu l \) protein), 10 mM, pH 7.4 phosphate-buffered saline(PBS) 180 \(\mu l \)를 혼합한 후에 0.25 mM CuSO₄ 10 \(\mu l \)를 첨가함으로써 반응을 시작하였다. 37℃에서 4 시간 동안 반응시간 후, 20% trichloroacetic acid(TCA) 용액 1 ml을 첨가하여 반응을 중단시켰다. 0.05 N NaOH 용액에 녹인 0.67% thiobarbituric acid(TBA) 1 ml을 첨가하고 교반한 후, 발색반응이 일어나도록 95℃에서 15 분간 가열하고 열음물에 냉각하였다. 3,000 rpm에서 15 분 동안 원심분리한 후, 상층액의 흔드름을 540 nm에서 측정하여 생성된 malondialdehyde(MDA)의 양을 계산하였다. Tetramethoxypropane의 저장용액을 이용하여 250 \(\mu l \) PBS 용액에 0-10 nmol MDA를 포함하는 표준용액을 만들어서 위와 같은 방법으로 가열하여 MDA의 생성량을 측정하였다.

3) 향산화 활성물질의 분리: 상기의 방법으로 확보된 활성 자원을 대상으로 다음 도식과 같은 전략으로 활성물질을 분리하고 각 화합물의 구조를 결정하였다.
미생물 발효액

Acetone extraction

EtOAc Fr. 활성 검색 H2O Fr.

Active Fr.

분리, 정제 (SiO2, C18, HPLC, Prep-TLC)

기기분석, 구조결정

4) 활성분리의 구조결정: 분리정제된 차해 물질을 유기용매에 녹여 UV/Visible Spectrophotometer(Shimadzu, UV-255)을 사용하여 500 nm에서 190 nm까지 흡광도를 측정하였다. 질량분석은 VG Trio-1000 GC/MS(Fisons Instrument, UK)을 이용하여 EI-mode로 측정하였다. NMR 스펙트럼은 Bruker AMX-400을 사용하여 1H-NMR은 400 MHz, 13C-NMR은 100 MHz에서 각각 측정하였다.

제 2 절 연구개발 수행 결과

1. B6 mouse의 각 장기별 proteome 분석

고지혈증 식별을 투여한 B6 마우스의 각 장기별 proteome 패턴을 그림 1에 나타내었다. 각 장기별로 고지혈증 식별을 투여하기 시작한 시점과 1주 후, 4주 후의 장기를 이용해 proteome를 분석하였다. 그림 1에서 보는 바와 같이 세로 생겨나는 단백질 spot들과 사라지는 단백질 spot들을 MALDI-TOF를 이용하여 분석하였다.
1A) Liver

[Images of gel electrophoresis for liver at 0, 1, and 4 weeks.]

1B) Heart

[Images of gel electrophoresis for heart at 0, 1, and 4 weeks.]
1C) Brain

![Brain 0 week](image)

![Brain 1 week](image)

![Brain 4 week](image)

1D) Adrenal gland

![Adrenal gland 0 week](image)

![Adrenal gland 1 week](image)

![Adrenal gland 4 week](image)
1E) Serum

1F) Aorta

그림 1. B6 mouse에서의 각 장기별 proteome 분석. 1A) Liver, 1B) Heart, 1C) Brain, 1D) Adrenal gland, 1E) Serum, 1F) Aorta.
2. ApoE KO mouse의 각 장기별 proteome 분석

고지혈증 식단을 투여한 ApoE KO 마우스의 각 장기별 proteome 패턴을 그림 2에 나타내었다. 각 장기별로 고지혈증 식단을 투여하기 시작한 시점과 1주 후, 4주 후의 장기를 이용해 proteome를 분석하였다. 그림 2에서 보는 바와 같이 새로 생겨나는 단백질 spot들과 사라지는 단백질 spot들은 MALDI-TOF를 이용하여 분석하였다.

2A) Liver
2B) Heart

2C) Brain

- 29 -
2D) Adrenal gland

2E) Serum

3. B6 마우스 proteome의 MALDI-TOF 분석

2-D 절 상에서 변화를 보이는 단백질 spot들을 MALDI-TOF로 분석하여 모델동물에서의 각 장기별 발현단백질 비교, 분석하여 표 2에 정리하였다.
Table 2. 각 장기에서 변화를 보이는 단백질 분석 list

1-A) Liver

<table>
<thead>
<tr>
<th>Spot #</th>
<th>Protein Information</th>
<th>pI</th>
<th>MW (kDa)</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tgii12493iispP24063iITIAL_MOUSE LEUKOCYTE ADHESION GLYCOPROTEIN LFA-1 ALPHA CHAIN PRECURSOR (LEUKOCYTE FUNCTION ASSOCIATED MOLECULE 1, ALPHA CHAIN) (INTEGRIN ALPHA-L)</td>
<td>5.8</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Tgii117821ispP14211iCRTC_MOUSE CALRETICULIN PRECURSOR (CRF53) (CALREGULIN) (HACBP) (ERP60)</td>
<td>4.3</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Tgii30239iispP56480iATPB_MOUSE ATP SYNTHASE BETA CHAIN, MITOCHONDRIAL PRECURSOR</td>
<td>5.1</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Tgii617497iispQ6328iSHP2_MOUSE SELENIUM-BINDING PROTEIN 2 (66 KDA ACETAMINOGEN-BINDING PROTEIN) (AP56)</td>
<td>5.8</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Tgii107551iispP52180iIRK4_MOUSE INWARD RECTIFIER POTASSIUM CHANNEL 4 (POTASSIUM CHANNEL, INWARDLY RECTIFYING, SUBFAMILY J, MEMBER 4) (IRK3) (IRK2.3)</td>
<td>5.8</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Tgii13393ispP21107iTTPM_MOUSE TROPOMYOSIN 5, CYTOSKELETAL TYPE</td>
<td>4.7</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Tgii127593ispP02762iMPU6_MOUSE MAJOR URINARY PROTEIN 6 PRECURSOR (MUP 6) (ALPHA-2U-GLOBULIN) (GROUP 1, B30) (ALLERGEN MUS M 1)</td>
<td>4.9</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Tgii12810iispP08371iNEUM_MOUSE NEUROMODULIN (AXONAL MEMBRANE PROTEIN GAP-43) (PP43) (B-50) (PROTHIN F1) (CALMODULIN-BINDING PROTEIN P-57)</td>
<td>4.6</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Tgii12810iispP08371iNEUM_MOUSE NEUROMODULIN (AXONAL MEMBRANE PROTEIN GAP-43) (PP43) (B-50) (PROTHIN F1) (CALMODULIN-BINDING PROTEIN P-57)</td>
<td>4.6</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Tgii46450iispQ06920iPYC_MOUSE PYRUVATE CARBOXYLASE PRECURSOR (PYRUVIC CARBOXYLASE) (PCB)</td>
<td>6.3</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Tgii15704ispP24270iCATA_MOUSE CATALASE</td>
<td>7.8</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>16-4</td>
<td>Tgii134514ispP11518iLAMC_MOUSE LAMINS C AND C2</td>
<td>6.4</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Tgii12884ispP05239iAATM_MOUSE ASPARTATE AMINOTRANSFERASE, MITOCHONDRIAL PRECURSOR (TRANSAMINASE A) (GLUTAMATE OXALACETATE TRANSAMINASE-2)</td>
<td>9.4</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Tgii12716ispP10693iGTML_MOUSE GLUTATHIONE S-TRANSFERASE GT3.7 (GST 1-1) (GST CLASS-MU)</td>
<td>7.8</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Tgii11809ispP24369iCYPB_MOUSE PEPTIDYL-PROLYL CIS-TRANS ISOMERASE B PRECURSOR (PPIASE) (ROTAMASE) (CYCLOPHILIN B) (S-CYCLOPHILIN) (SCYLP) (CYP-S1)</td>
<td>9.5</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Tgii115704ispP24270iCATA_MOUSE CATALASE</td>
<td>7.8</td>
<td>59</td>
<td></td>
</tr>
</tbody>
</table>
1-B) Heart

<table>
<thead>
<tr>
<th>Spot #</th>
<th>Protein Information</th>
<th>pI</th>
<th>MW (kDa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tgii548440/splP36993/P3CB_MOUSE PROTEIN PHOSPHATASE 2C BETA ISOFORM (PP2C-BETA) (IA) (PROTEIN PHOSPHATASE 1B)</td>
<td>5.0</td>
<td>42</td>
</tr>
<tr>
<td>2</td>
<td>Tgii6939981/splP054834/RHOG6_MOUSE RHO-GTPASE-ACTIVATING PROTEIN 6 (RHO-TYPE GTPASE-ACTIVATING PROTEIN RHOGAPX-1)</td>
<td>5.4</td>
<td>42</td>
</tr>
<tr>
<td>3</td>
<td>Tgii6647561/splP050222/MAFR_MOUSE MEMBRANE ASSOCIATED PROGESTERONE RECEPTOR COMPONENT</td>
<td>4.5</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>Tgii3993900/splP31154/DCAM_MOUSE S-ADENOSYL METHIONINE DECARBOXYLASE PROENZYME (ADOMETDC)</td>
<td>5.7</td>
<td>38</td>
</tr>
<tr>
<td>5</td>
<td>Tgii136861/splP19152/P3TRI_MOUSE INTERFERON-RELATED DEVELOPMENTAL REGULATOR 1 (NERVE GROWTH FACTOR-INDUCIBLE PROTEIN PC4) (TPA INDUCED SEQUENCE 7) (TIS7 PROTEIN)</td>
<td>7.2</td>
<td>49</td>
</tr>
<tr>
<td>6</td>
<td>Tgii266460/splP29621/KBP_MOUSE KALLIKREIN-BINDING PROTEIN PRECURSOR (KBP)</td>
<td>7.8</td>
<td>46</td>
</tr>
<tr>
<td>7</td>
<td>Tgii8134369/splP054089/CCR6_MOUSE C-C CHEMOKINE RECEPTOR TYPE 6 (C-C CKR-6) (CC-CKR-6) (CCR-6) (KY411)</td>
<td>9.7</td>
<td>42</td>
</tr>
<tr>
<td>8</td>
<td>Tgii8347552/splP32115/PAX4_MOUSE PAIRED BOX PROTEIN PAX-4</td>
<td>9.9</td>
<td>37</td>
</tr>
<tr>
<td>9</td>
<td>Tgii6165666/splP62414/ND2_MOUSE NEUROGENIC DIFFERENTIATION FACTOR 2 (NEUROD-RELATED FACTOR) (NDRF)</td>
<td>6.3</td>
<td>41</td>
</tr>
<tr>
<td>10</td>
<td>Tgii115742/splP06790/CAT1_MOUSE CATHEPSIN L PRECURSOR (MAJOR EXCRETED PROTEIN) (MEP)</td>
<td>6.4</td>
<td>37</td>
</tr>
<tr>
<td>11</td>
<td>Tgii828369/splP2014/MSF5_MOUSE SWI/SNF RELATED, MATRIX ASSOCIATED, ACTIN DEPENDENT REGULATOR OF CHROMATIN SUBFAMILY B MEMBER 1 (INTEGRASE INTERACTOR 1 PROTEIN) (MSF5)</td>
<td>5.9</td>
<td>44</td>
</tr>
<tr>
<td>12</td>
<td>Tgii3219602/splP70387/HFE_MOUSE HEREDITARY HAEMOCHROMATOSIS PROTEIN HOMOLOG PRECURSOR</td>
<td>5.8</td>
<td>40</td>
</tr>
</tbody>
</table>
1-C) Adrenal gland

<table>
<thead>
<tr>
<th>Spot #</th>
<th>Protein Information</th>
<th>pI</th>
<th>MW (kDa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1</td>
<td>Tgii239841sp</td>
<td>P</td>
<td>P97457</td>
</tr>
<tr>
<td>1-0</td>
<td>Tgii2498920</td>
<td>sp</td>
<td>Q</td>
</tr>
<tr>
<td>3-0</td>
<td>Tgii1318921sp</td>
<td>P</td>
<td>P22560</td>
</tr>
<tr>
<td>5-0</td>
<td>Tgii1217121sp</td>
<td>P</td>
<td>P13745</td>
</tr>
<tr>
<td>1-4</td>
<td>Tgii2497882</td>
<td>sp</td>
<td>P</td>
</tr>
<tr>
<td>2-4</td>
<td>Tgii35680</td>
<td>sp</td>
<td>P</td>
</tr>
<tr>
<td>3-4</td>
<td>Tgii1380971sp</td>
<td>P</td>
<td>P21107</td>
</tr>
<tr>
<td>4-4</td>
<td>Tgii5479238sp</td>
<td>P</td>
<td>P35700</td>
</tr>
<tr>
<td>Spot #</td>
<td>Protein Information</td>
<td>pI</td>
<td>MW (kDa)</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>1-0</td>
<td>Trgl117502</td>
<td>sp</td>
<td>P14211</td>
</tr>
<tr>
<td>2-0</td>
<td>Trgl134686</td>
<td>sp</td>
<td>P46666</td>
</tr>
<tr>
<td>3-0</td>
<td>Trgl119340</td>
<td>sp</td>
<td>P17182</td>
</tr>
<tr>
<td>4-0</td>
<td>Trgl127713</td>
<td>sp</td>
<td>P129799</td>
</tr>
<tr>
<td>5-0</td>
<td>Trgl223557</td>
<td>sp</td>
<td>PQ0623</td>
</tr>
<tr>
<td>6-0</td>
<td>Trgl223557</td>
<td>sp</td>
<td>PQ0623</td>
</tr>
<tr>
<td>7-0</td>
<td>Trgl224285</td>
<td>sp</td>
<td>Q62447</td>
</tr>
<tr>
<td>8-0</td>
<td>Trgl544338</td>
<td>sp</td>
<td>P35846</td>
</tr>
<tr>
<td>1-4</td>
<td>Trgl544338</td>
<td>sp</td>
<td>P35846</td>
</tr>
<tr>
<td>2-4</td>
<td>Trgl313065</td>
<td>sp</td>
<td>Q62168</td>
</tr>
<tr>
<td>3-4</td>
<td>Trgl243953</td>
<td>sp</td>
<td>O08736</td>
</tr>
<tr>
<td>4-4</td>
<td>Trgl170331</td>
<td>sp</td>
<td>P06728</td>
</tr>
<tr>
<td>5-4</td>
<td>Trgl170331</td>
<td>sp</td>
<td>P06728</td>
</tr>
<tr>
<td>6-4</td>
<td>Trgl139642</td>
<td>sp</td>
<td>P21614</td>
</tr>
<tr>
<td>Spot #</td>
<td>Protein Information</td>
<td>pI</td>
<td>MW (kDa)</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>-----</td>
<td>----------</td>
</tr>
<tr>
<td>1-0</td>
<td>Tgi[3914028]spQ69948]MAD4_MOUSE MAX-INTERACTING TRANSCRIPTIONAL REPRESSOR MAD4</td>
<td>7.1</td>
<td>23</td>
</tr>
<tr>
<td>2-0</td>
<td>Tgi[138836]spP30152/VIME_MOUSE VIMENTIN</td>
<td>5.1</td>
<td>53</td>
</tr>
<tr>
<td>3-0</td>
<td>Tgi[547823]spP38700/TDX2_MOUSE THIOREDOXIN PEROXIDASE 2 (THIOREDOXIN-DEPENDENT PEROXIDE REDUCTASE 2) (OSTEOBLAST SPECIFIC FACTOR 3) (OSP-3) (MACROPHAGE 23 KDA STRESS PROTEIN)</td>
<td>8.5</td>
<td>22</td>
</tr>
<tr>
<td>4-0</td>
<td>Tgi[170554]spP58288/CADB_MOUSE CADHERIN-11 PRECURSOR (OSTEOBLAST-CADHERIN) (OB-CADHERIN) (OSF-4)</td>
<td>4.7</td>
<td>88</td>
</tr>
<tr>
<td>5-0</td>
<td>Tgi[135270]spP47713/Pazy_MOUSE CYTOSOLIC PHOSPHOLIPASE A2 (CPLA2) [INCLUDES: PHOSPHOLIPASE A2 (CPLA2) (PHOSPHATIDYLCHOLINE 2-ACYLHYDROLASE); LYSOPHOSPHOLIPASE I]</td>
<td>5.3</td>
<td>85</td>
</tr>
<tr>
<td>1-4</td>
<td>T[170462]spP42932/TCPQ_MOUSE T-COMPLEX PROTEIN 1, THETA SUBUNIT (TCP-1-THETA) (CCT-THETA)</td>
<td>5.4</td>
<td>59</td>
</tr>
<tr>
<td>2-4</td>
<td>Tgi[703943]spQ08061/PRLR_MOUSE PROLACTIN RECEPTOR PRECURSOR (PRL-R)</td>
<td>5.0</td>
<td>68</td>
</tr>
<tr>
<td>3-4</td>
<td>Tgi[170835]spP51855/GSBR_MOUSE GLUTATHIONE SYNTHETASE (GLUTATHIONE SYNTHASE) (GSH SYNTHETASE) (GSH-S)</td>
<td>5.6</td>
<td>52</td>
</tr>
<tr>
<td>4-4</td>
<td>Tgi[125306]spP07310/KCRM_MOUSE CREATINE KINASE, M CHAIN (M-CK)</td>
<td>6.6</td>
<td>43</td>
</tr>
<tr>
<td>5-4</td>
<td>Tgi[170834]spP62246/IPF1_MOUSE INSULIN PROMOTER FACTOR 1 (IPF-1) (ISLET/DUODENUM HOMEobox-1) (ID-1) (SOMATOSTATIN TRANSActivATING FACTOR-1) (STF-1) (PANCREAS/DUODENUM HOMEobox-1)</td>
<td>6.4</td>
<td>30</td>
</tr>
<tr>
<td>6-4</td>
<td>Tgi[666177]spP15105/GLNA_MOUSE GLUTAMINE SYNTHETASE (GLUTAMATE--AMMONIA LIGASE)</td>
<td>6.5</td>
<td>42</td>
</tr>
<tr>
<td>7-4</td>
<td>Tgi[125088]spP19001/KLCS_MOUSE KERATIN, TYPE 1 CYTOSKELETAL 19 (CYTOKERATIN 19) (K19) (CK 19)</td>
<td>5.3</td>
<td>44</td>
</tr>
<tr>
<td>8-4</td>
<td>Tgi[250778]spP70214/MA7 мужчин MASP_MOUSE MASPIN PRECURSOR (PROTEASE INHIBITOR 5)</td>
<td>5.5</td>
<td>42</td>
</tr>
<tr>
<td>9-4</td>
<td>Tgi[688109]spQ92114/LXRL_MOUSE X-LINKED JUVENILE RETINOSCHISIS PROTEIN PRECURSOR</td>
<td>5.5</td>
<td>25</td>
</tr>
</tbody>
</table>

고지혈증 유발자 각 장기별 발현 단백질의 변화를 분석하여, 혈청 14 개, 흉내동맥 14 개, 심장 12 개, 간 16 개 및 부신 8 개로 총 64 개의 단백질을 발굴하였으며, 이들
중 특히 low density lipoprotein의 산화 변형과 관련이 높을 것으로 여겨지는 thioredoxin peroxidase 2와 혈관의 수축과 관련이 높을 것으로 예측되는 tropomyosin
은 간, 대장막 및 부신에서 증가해서 발현이 되는 양상을 보였다. 다음의 표는 각 장
기에서 발현의 변화를 보인 단백질의 종류를 요약하였다.

<table>
<thead>
<tr>
<th>표적장기</th>
<th>주요 단백질의 종류</th>
</tr>
</thead>
<tbody>
<tr>
<td>혈청</td>
<td>Apolipoprotein A1 등 고지혈증과 관련이 높은 단백질 14종이 발현의 변화를 보였음</td>
</tr>
<tr>
<td>대장막</td>
<td>Low density lipoprotein의 산화 변형과 관련이 높을 것으로 여겨지는 thioredoxin peroxidase 2 등 14 종의 단백질이 발현의 변화를 보였음</td>
</tr>
<tr>
<td>심장</td>
<td>Chemokine receptor type 6 등 12종의 단백질이 발현의 변화를 보였음</td>
</tr>
<tr>
<td>간</td>
<td>Tropomyosin 등 16종의 단백질이 발현의 변화를 보였음</td>
</tr>
<tr>
<td>부신</td>
<td>Tropomyosin 및 thioredoxin peroxidase 2 등 8종의 단백질이 발현의 변화를 보였음</td>
</tr>
</tbody>
</table>

4. 의약후보물질(DHPPA) 처리에 따른 serum의 프로테온 분석

그림 3. DHPPA가 처리된 LDLr knockout 마우스의 serum 프로테온 분석.
5. 의약품물질(3,4-DHPAA)의 포적 단백질에 관한 연구

DHPAA는 전반적으로 혈청지단백질에 영향을 미치지 않았음을 알 수 있으며, 현재 PPAR-alpha agonist로 알려진 finofibrate는 기존에 알려진 작용기전과 마찬가지로 혈청지단백의 개선효과가 뛰어나며, 특히 HDL-cholesterol의 함량을 증가시키는 효과가 있음을 알 수 있었다.

그림 4. 3,4-DHPAA가 혈청지단백질에 미치는 영향. A, total cholesterol; B, LDL-cholesterol; C, HDL-cholesterol; D, triglyceride.

DHPAA는 동맥경화 마우스 모델에서 병변의 면적을 매우 유의성있게 감소시킴을 알 수 있었다(그림 5).

마우스 모델에서의 친결성으로 고지혈관성 동맥경화를 유발시킨 토끼의 모델에서도 DHPAA가 동맥벽에 형성되는 지방성조의 면적을 감소시키는 효과가 있

- 38 -
음을 알 수 있었다. DHPPA가 동맥경화의 발생 초기에 단핵구 세포가 동맥벽면에 부착되는데 관여하는 vascular cell adhesion molecule-1의 발현에 미치는 영향을 조사한 결과 DHPPA의 표적 단백질 중 하나가 VCAM-1임을 알 수 있었다.

![Figures A and B](image)

그림 5. DHPPA가 동맥경화병변 형성에 미치는 영향. A, 병변면적의 비교; B, 병변이 형성된 대조군의 대표적인 조직 표본; C, lovastatin 치료군의 대표적인 조직 표본; D, DHPPA 치료군의 대표적인 조직 표본.

6. 의약품효과(DHPPA) 투여 후 지단백질 및 아포지단백질 변화 분석

기존의 실험방법은 동물혈관을 채취하여 조직심분리와 gel-filtration column chromatography를 거쳐 분리된 각 지단백질들을 개별적으로 분석하는 방법을 사용하였으므로, 시간과 비용면에서 불리하였고 특히 소량의 혈액시료를 취급하기에는 어려운 점이 있어왔다. 본 연구에 사용한 생쥐모델의 혈액은 특히 0.5 ml 이하의 소량이
므로 이러한 단점을 극복하고자 초원심분리 후 직접 전기영동에 적용하는 방법을 사용하였다. 좀더 자세히 기술하면 각 실험투명 (n=8) 으로부터 0.2 ml씩의 pooling된 혈장에 건조된 KBr를 일정량 첨가하여 혈장의 밀도를 d=1.225로 조정하고, 그 위에 NaCl과 NaBr로 조제된 밀도용액 (d=1.223)을 2 ml씩 분주하여 아래로부터 NaBr에 의해 밀도구매가 생기도록 overlay한다. 준비환료된 초원심분리관을 SW60Ti rotor에 장착하여 48 시간 동안 56,000 rpm에서 초원심분리하여 모세관을 이용하여 total lipoprotein을 채취한 후 electromicrodialysis를 통해 과량의 염을 제거하고 시료들을 바로 4-15% native gel, 4-15% SDS-PAGE, isolectricfocusing (pH 3-9)의 전기영동 (Pharmacia Phast system)에 적용하여 염자의 크기, 아포단백질의 조성, pH 값의 차이에 따른 분포 등을 조사하였다.

각각 전기영동의 결과는 그림 6의 panel A, C, E에 나타내었는데, 먼저 panel A는 4-15%의 native gel로서 control mice (C57BL6)와 LDL-receptor knockout mice의 혈장 지단백질 프로필을 비교한 것이다. 이 그림에서 normal mice의 경우 HCHF 식이가 진행되면서 LDL임자가 새로이 나타나는 것을 볼 수 있고 (lane 3 of panel A), LDL-receptor knockout mice 경우 초기에 존재하던 small HDL이 (lane 4 of panel A) HCHF 식이가 진행되면서 완전히 사라지는 것을 관찰할 수 있었다 (lane 6 of panel A). 이러한 증상 효과는 아포지단백질의 조성에도 그대로 나타나, panel C에서 보는 바와 같이 control mice의 경우 HCHF 식이가 진행되면서 apoA-I의 증가보다는 apoB와 apoE의 증가가 강하게 나타났고 (lane 3), LDL-receptor knockout mice의 경우 apoB의 증가와 apoA-I의 감소가 동시에 두드러지게 나타났다 (lane 5, 6). Panel C에서 보는 바와 같이, 억산성의 pH 값을 갖는 apoA-I이 두 그룹 모두에서 HCHF 식이가 진행되면서 감소하는데, LDL-receptor knockout mice 그룹에서 더 빠른 속도로 감소하는 것을 알 수 있었다.

위와 같은 예비실험을 통해 확립된 분석 방법을 DHPPA의 약리 효능 분석에 그대로 적용하였다. Panel B, D, F에서 보는 바와 같이 한 개 그룹의 negative control과 두 개 그룹의 positive control (Fenofibrate-fed, Lovastatin-fed)과 병행실험 하여 분석한 결과 HDL의 증가에 미치는 영향은 Fenofibrate>DHPPA>Lovastatin 순으로 효과가 좋았으며 (panel B), apoA-I의 농도증가에 대한 효과 역시 같은 순서로 효과를 보였다. 여기서 주목할만한 결과는 3, 4-DHPPA가 apo-B 단백질의 농도감소에는 특별한 효과를 보이지는 않았지만 apoA-I의 농도 증가에는 좋은 효과가 있음이 SDS-PAGE (lane 4 of panel D)와 isolectric focusing (lane 4 of panel F)의 결과에서 확인되었다.
Fig. 6. Electrophoretic profiles of plasma lipoproteins and apolipoproteins from C57BL/6 and LDLr KO mice with chow-fed or high cholesterol high fat (HCHF)-fed. Panel A displays electrophoretic pattern of lipoproteins by 8–23% native gel electrophoresis. Lane 1, C57BL/6 mice with 0 wk-fed; lane 2, C57BL/6 mice with 1 wk-fed; lane 3, C57BL/6 mice with 4 wk-fed; lane 4, LDL-receptor knockout mice with 0 wk-fed; lane 5,
LDL-receptor knockout mice with 1 wk-fed; lane 6, LDL-receptor knockout mice with 4 wk-fed. Panel B shows electrophoretic pattern of lipoproteins isolated from HCHF-fed LDL-receptor knockout mice. All samples were analyzed by 8-25% native gel electrophoresis. Lane 1, Fenofibrate-fed; lane 2, lovastatin-fed; lane 3, ALC-F1011-fed; lane 4, DHPPA; lane 5, HCHF-fed only as a control. In panel A and B, lane M contains Pharmacia HMW marker (669, 440, 232, 140, 66 kDa, correspondingly from top). Panel C shows electrophoretic patterns of total apolipoproteins on 4-15% SDS-PAGE. Lane 1, C57BL6 mice with 0 wk-fed; lane 2, C57BL6 mice with 1 wk-fed; lane 3, C57BL6 mice with 4 wk-fed; lane 4, LDL-receptor knockout mice with 0 wk-fed; lane 5, LDL-receptor knockout mice with 1 wk-fed; lane 6, LDL-receptor knockout mice with 4 wk-fed. Panel D shows electrophoretic patterns of total apolipoproteins on 4-15% SDS-PAGE. Lane 1, Fenofibrate-fed; lane 2, lovastatin-fed; lane 3, ALC-F1011-fed; lane 4, DHPPA; lane 5, HCHF-fed only as a control. In panel C and D, smaller arrow indicates apoA-I (28 kDa), while lane M contains Pharmacia LMW marker (97, 67, 45, 31, 20, 14 kDa, correspondingly from top). Panel E shows electrophoretic mobility patterns of total apolipoproteins by isoelectricfocusing (pH 3-9). Lane 1, C57BL6 mice with 0 wk-fed; lane 2, C57BL6 mice with 1 wk-fed; lane 3, C57BL6 mice with 4 wk-fed; lane 4, LDL-receptor knockout mice with 0 wk-fed; lane 5, LDL-receptor knockout mice with 1 wk-fed; lane 6, LDL-receptor knockout mice with 4 wk-fed. Panel F shows electrophoretic mobility patterns of total apolipoproteins by isoelectricfocusing (pH 3-9). Lane 1, Fenofibrate-fed; lane 2, lovastatin-fed; lane 3, ALC-F1011-fed; lane 4, DHPPA; lane 5, HCHF-fed only as a control. In panel E and F, arrows indicate apoA-I (28 kDa), and the band was strongly appeared in lane 1 and 4.

7. LDL에 의한 혈관 근육세포 성장 및 작용기전 연구

7. 1. LDL에 의한 VSMC의 세포 성장 효과 및 작용기전 연구

혈관의 인간인근육세포(hVSMC)에 100 μg/ml의 고농도 native LDL를 처리하면, hVSMC은 세포 성장을 보이며 된다. 그림 7의 좌측 하단에서 보듯이 약 30% 정도의 성장 촉진 효과를 보인다. 이런 LDL에 의한 성장 촉진 영향은, 그림 1의 좌측 하단에서 GPCR의 Gi 계열의 억제제인 pertussis toxin(PTX)을 처리하게 되면 사라지게 된다. 즉 LDL에 의한 세포 성장 효과는 고전적인 LDL 수용체를 통하는 것이 아니라, 전화 새로운 타입의 알려지지 않은 신규의 GPCR에 의하여 신호가 전달된다는 것을 의미한다.

세포내에서의 신호전달은 그림 1의 좌측 상단에서 알 수 있듯이 MAP kinase 계열 중의 하나인 Erk 1/2의 인산화를 통하여 이루어진다. 따라서 그림 1의 좌측 상단에서 보듯이, Erk 1/2의 PTX를 처리하면 LDL에 의한 Erk 1/2의 인산화가 현저히 저해된다. 또한 고전적인 LDL 수용체의 억제제로 알려진 heparin은 LDL과 동시에 처리하여도, 그림 1의 우측에서 보듯이 LDL의 세포 성장 신호가 잘 전달됨을 알 수 있다. 즉 고전적인 LDL수용체는 LDL에 의한 세포 성장에 관여하지 않는다는 결론이다.
7.2. LDL에 의한 VSMC의 세포 성장에 있어서의 ROS의 중요성

LDL에 의한 인간의 혈관 연근육세포 (VSMC)의 성장 촉진 효과는 Gi 수용체를 경유하여 세포내 활성 반응기산소(ROS)를 경유하는 것으로 사료된다. 그림 8에서 보듯이, 여러 종류의 ROS 억제제를 처리하여 그 효과를 비교 분석하였다.

여러 종류의 ROS 관련 억제제 중에서도, 생성된 superoxide를 체계하는 SOD (superoxide dismutase)을 처리하였을 경우와, 전반적인 ROS 생성 억제제인 NAC (N-acetyl cysteine, nonspecific anti-oxidant)을 처리하였을 경우에, LDL에 의한 VSMC의 세포 성장 효과가 완전히 사라지는 현상을 관찰하였다. 이것은 superoxide (O$_2^-$)가 세포 성장에 있어서 중요한 signal transducer임을 입증하는 것이다.
7. 3. LDL에 의한 VSMC의 cytokine 생성 효과

LDL을 VSMC에 처리하면, 세포 성장 효과와 더불어서 염증을 유발할 수 있는 cytokine의 생성도 동시에 촉진된다. 본 실험에 있어서는 IL-8의 발현량 증대를 관찰할 수 있었다. 그림 9의 각축 상단에 있는 time-course 실험에서 보듯이 RT 실험으로 확인하였을 경우, LDL을 처리하고 약 4시간 경에 최고치를 이루게 된다. 우측에서 알 수 있었듯이, positive control인 ox-LDL과 TNF-의 경우와 별다른 차이 없이 LDL에 의하여 VSMC에서 cytokine이 생성되는 현상을 발견하였다. 그림 9을 경량화 하여 그림 10에서 보듯이, 약 5배 정도의 cytokine 생성량의 증대를 관찰하였다.

![Cytokine (458 bp)](image)

![G3PDH (475 bp)](image)

LDL (100 μg/ml) 0 2 4 8 12 24 (h)

그림 9. LDL에 의한 VSMC에서의 cytokine 생성.

![Density (AU)](image)

LDL (100 μg/ml) 0 2 4 8 12 24 (h)

![Cytokine (ng/ml)](image)

Q n-LDL TNF-α

그림 10. LDL에 의한 cytokine 생성의 경량화 도표.

- 44 -
7. 4. LDL에 의한 cytokine 생성에 관련하는 Gi 수용체

결과 7에서와 같은 내용의 실험을 수행하여, LDL에 의한 cytokine의 생성 증가에 Gi 수용체가 관여되어 있으며, 기존의 LDL 수용체는 관여하고 있지 않다는 것을 증명하는 실험을 수행하였다. 그림 5의 결과에서 알 수 있듯이, Gi 계열의 역계제인 PTX를 처리하면 LDL에 의한 VSMC의 cytokine의 생성이 완전히 억제됨을 관찰하였 다. 또한 그림 11의 우측에서 알 수 있듯이, 고밀도의 LDL 수용체의 역계제인 heparin 을 처리하여도, cytokine의 생성이 별로 영향을 받지 않음을 관찰하였다. 이런 현상의 결과 7의 경우처럼 MAP kinase의 일종인 p38에 의하여 조절됨을 그림 11의 상단에서 알 수 있었다.

그림 11. LDL에 의한 cytokine 생성 증진 효과 및 Gi 수용체의 역할.

7. 5. LDL에 의한 VSMC의 cytokine 생성 증진에 있어서의 ROS의 역할

결과 8와 유사하게 ROS의 관련성 실험을 수행하였다. 그림 12에서 보듯이, 여러 ROS 역계제 중에서 H_2O_2를 제거하는 catalase를 LDL과 동시에 처리하면 cytokine의 증진 효과가 사라짐을 관찰하였다. 이것은 cytokine의 생성 증진에 있어서 과산화수소 수가 중요한 역할을 할 것을 시사한다. 결과 8의 경우와 마찬가지로 일반적인 ROS 생성
여러 시약을 처리할 때 사용된 LDL의 integrity를 확인하는 gel을 수행하여, 억제제 처리 실험 중에 사용된 LDL이 분해되지 않았음을 상단의 점에서 확인하였다.

그림 12. LDL에 의한 cytokine 생성 증진에 있어서의 ROS 억제제의 효과.

7. 6. 평활근세포의 사멸체계 활성 및 TNF에 의한 사멸측정

- 혈관세포 사멸 측정법: 혈관세포를 물질과 12시간 배양한 후 50 ng/ml의 TNF-alpha로 처리한다. 72시간 후 세포를 trypsin/EDTA로 tissue culture plate에서 분리한 다음 trypan blue로 염색한다. 염색된 세포를 현미경 상에서 눈으로 보면서 살아있는 세포와 죽은 세포를 count한다. 살아있는 세포수를 총 세포수로 나눈 값을 viability로 계산한다.
- Rat aorta에서 분리된 smooth muscle cell을 40 μM의 baicalein, chrysin, myricetin 으로 12시간 처리하고 TNF-alpha와 함께 72시간 배양한 후 세포의 사멸정도를 측정하였다. Baicalein, chrysin, myricetin 단독으로 처리한 경우 세포의 사멸이 유도하지 않았다. TNF-alpha와 함께 처리한 경우 baicalein, myricetin 또한 세포의 사멸을 유도되지 않았다. Chrysin 경우 TNF-alpha에 의한 세포의 사멸을 증가시켰지만 통계적인 유의성은 발견되지 않았다.
8. 실험 결과와 의약신청물질 합성

히드록시 히드로산남산의 에스테르 유도체 합성에 있어서, 반응물이 알킬 알코올 일
매의 에스테르 제조방법과 반응물이 알킬 할라이드 일 매의 에스테르 제조방법을 확
립하였다. 4-hydroxyhydrocinnamic acid로부터 4개의 에스테르 유도체,
3,4-dihydroxyhydrocinnamic acid로부터 4개의 유도체를 합성하였다.

합성된 에스테르의 알킬 나프탈렌 부분은 전유성의 변화를 위해 알킬 탄소수를 다
르게 하였고 또한 나프탈렌 위치도 변화를 주었다. 각 유도체의 구조는 분광학적 방법
으로 확인하였으며, 합성 유도체들은 동물에 투여하여 생체내 치료대사(total
cholesterol)에 미치는 영향을 단기간에 걸쳐 검정(spot test)하여 향후 고지혈증 및 동
맥경화와 같은 성인병 예방 및 치료용 in vivo 활성검색을 후보물질을 탐색하고자 하
였으며, 대조군과 비교하여 유의성 있게 총콜레스테롤이 12-14% 감소한 화합물을 선별
하였다 (표 3).

!<Spot Test>!

<table>
<thead>
<tr>
<th>동물실험 (8주령 C57BL/6J mice; 각군당 n = 5)</th>
<th>실험결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25% cholesterol diet (대조군)</td>
<td>Total cholesterol</td>
</tr>
<tr>
<td>1.25% cholesterol diet + 합성유도체(0.05% wt/wt diet)</td>
<td></td>
</tr>
</tbody>
</table>

- 47 -
표 3. 고프레스테롤 유발 마우스를 이용한 생체내 총프레스테롤 강하 효과

<table>
<thead>
<tr>
<th>시료명</th>
<th>TC (mg/ml)</th>
<th>시료명</th>
<th>TC (mg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>대조군</td>
<td>222±30</td>
<td>2090</td>
<td>211±15</td>
</tr>
<tr>
<td>2091</td>
<td>211±26</td>
<td>2094</td>
<td>215±5</td>
</tr>
<tr>
<td>2092</td>
<td>239±24</td>
<td>2095</td>
<td>212±4</td>
</tr>
<tr>
<td>2093</td>
<td>191±7</td>
<td>2096</td>
<td>195±13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2097</td>
<td>195±9</td>
</tr>
</tbody>
</table>

9. 실험결과 및 의의선도

9.1. *Penicillium herquei* sp. F2979로부터 항산화 활성물질의 분리

F2979는 생장속도와 colony color 등 형태학적 특성을 관찰하였으며 광학현미경을 이용하여 포자와 군사의 형태를 관찰하여 *Penicillium herquei*로 동정되었다. 이 균주의 대사산물로는 항생작용을 하는 alkaloid 계통의 herqueine(C_{18}H_{26}N_{2})와 antitumor agents로서 duclauxin이 있다.

활성균주로 분리된 진균 F2979가 생성하는 항산화 활성물질을 분리하기 위하여 500 ml의 baffled flask에 50 ml의 YM배지(yeast extract 4 g, malt extract 1 g, dextrose 4 g, D.W. 1 L)와 -70℃에 보관된 균주 F2979를 넣고 3 일간 배양한다. 배양된 seed culture는 5 L 용량의 삼각플라스크 10개에 1.5 L의 배지(Glucose 30 g, Yeast extract 2 g, Polypeptone 5 g, MgSO_{4} 30 g, KH_{2}PO_{4} 1.5 g)를 넣은 후 각각 50 ml씩 접종하여 28℃, 150 rpm에서 7 일간 배양하였다. 배양 종료 후 상층액과 균체를 분리하지 않고 acetone으로 overnight 추출한 후, 결여서 acetone 추출액은 용매를 갈압 농축하여 동량의 ethyl acetate로 3번 추출하여 농축하고 물층은 4℃에 보관하였다. 두 층 모두 최종농도 40 μg/ml에서 활성을 측정하였다. 항산화 활성 측정 결과 ethyl acetate층에서 82%의 활성을 보였고, 물층은 50%의 활성을 보여서 진한 갈색의 ethyl acetate 추출물 10 g을 확보하였다.

위의 ethyl acetate추출물을 첫 번째 실리카겔 칼럼크로마토그래피를 수행하였다. Silica gel(Merck, Kieselgel 60, 230~400 mesh)에 진행 갈색추출물을 흡착시킨후 흡착과 에של아세테이트의 비율을 변화시킴으로서 실리카겔 칼럼크로마토그래피(칼럼사이즈: 60×210 mm)를 실시하였던 중 Hexane : EtOAc=1:1의 비율로 용리시킨 부분에서 활성
분획 0.73g를 얻었다. 이 활성 분획을 다시 80% MeOH을 사용하여 C-18 (Merck, Lichroprep RP-18, Art 13900) 컬럼크롤마토그래피(컬럼사이즈: 52×115)를 실시한 후 얻은 활성분획 225 mg을 얻었다. 이 분획을 다시 preparative-TLC (CHCl₃/MeOH=10:1, v/v)을 이용하여 향산화 활성을 나타내는 물질 100 mg을 얻었다. 최종적으로 HPLC(Hydrosphere-C₁₈, i.d. 20×250 mm, YMC Co. Ltd.; MeOH:H₂O = 7:3, 234 nm, 4 ml/ min)를 이용하여 활성물질 70 mg을 얻었다.

분리된 화합물은 노란색의 분말로 확득되었고, 물, 천산에는 녹지 않으며, 메탄올, 콜로로포름, 에틸 아세테이트에 용해된다. TLC를 수행한 결과 normal phase에서는 CHCl₃/MeOH = 10:1을 사용하여 Rₜ=0.79로 확인되었으며, 이 물질은 anisaldehyde 염색 용해(5% H₂SO₄, 2.5% acetic acid, 5% anisaldehyde, 87.5 % ethanol)로 발색시 노란색으로 발색되었다. MeOH용에로 하여 UV Spectrum을 측정한 결과 화합물 1의 최대흡수 파장은 220, 259, 340 nm이었다.

화합물 1의 분자량은 EI-MS로 측정한 결과 398에서 [M]+의 강한 ion peak가 나타나, 분자량이 398인 Anthocyarin 계열의 화합물로 예상된다. NMR 분석은 화합물 1을 CD₃OD에 녹여 ¹H와 ¹³C-NMR, DEPT, ¹H-¹H cosy, HMQC 스펙트럼을 측정하였으며, 여러 NMR 스펙트럼을 비교 분석하여 heterocyclic 화합물인 atrovenetinone으로 구조정립 하였다.

![Chemical Structure](image)

C₂₂H₂₂O₇

398.41

Atrovenetinone의 향산화 활성을 측정한 결과 그림 13에 나타내어진 것과 같이 1.9 μM 농도에서 IC₅₀치를 갖는 강한 활성을 보였다. 양성 대조군으로 사용한 Probucol은 2.1 μM 농도에서 IC₅₀치를 나타내 강력한 향산화제이며, atrovenetinone를 보다 비슷한 정도의 활성을 보였다. Human LDL을 이용하여 continuous monitoring (234 nm)를 통해 diene 생성량을 측정한 결과, 그림 14에서 보여진 것처럼 1 μM의
농도에서 probucol과 비슷한 정도로 LDL 산화되는 동안 Lag-time이 지연되는 것을 관찰할 수 있고 5 μM의 농도에선 프로보콜보다 Lag-time이 더 많이 지연되는 것을 볼 수 있다. 그림 15에서는 또다른 항산화 활성의 검정 방법인 electrophoretic mobility (전기적 이동도)를 통하여 활성을 관찰하여 본 결과 농도의존적으로 전기적 이동도가 감소하는 것이 나타났다. 따라서 Penicillium herquei sp. F2979로부터 분리한 atrovenentinone은 LDL-oxidation 활성 역제에 의한 고지혈증 및 동맥경화증 예방 및 치료제 개발을 위한 후보물질로서의 가능성을 보여주고 있다.

![Chart 13](chart13.png)

Fig. 13. LDL-antioxidative activity of atrovenentinone.

![Chart 14](chart14.png)

Fig. 14. Antioxidant activity of atrovenentinone on continuous monitoring of human LDL oxidation.
Fig. 15. Protection of LDL against Cu²⁺-induced oxidation by atrovenetinone and probucol (positive control). LDL (240 μg/ml) was incubated 10 μM CuSO₄ in 10 mM PBS buffer for 12 h at 37°C in the absence or presence of hematein and probucol. After incubation, 3.6 μg LDL protein was loaded onto 0.7% agarose gel for electrophoresis. Subsequently, the gel was stained with Coomassie brilliant R 250 and then dried. Lane 1: native LDL, lane 2: ox-LDL, lane 3: Compd 1 40 μM, lane 4: Compd 1 20 μM, lane 5: Compd 1 10 μM, lane 6: Compd 1 5 μM, lane 7: probucol 40 μM, lane 8: probucol 20 μM, Lane 9: probucol 10 μM, lane 10: probucol 5 μM.

9. 2. 산조판나무로부터 항산화 활성물질의 분리

본 실험에 사용한 산조판나무는 대한민국 충청북도 단양에서 채집하여 사용하였다. 채집한 산조판나무의 잎 800 g을 잘 섞어서 80% 메탄올 20 L를 넣어서 상온에서 24시간 방치한 후 교반하여 여과지를 이용하여 역상과 고체로 분리하였다. 이와 같은 조작을 3회 반복한 후 액상을 모아서 감압하여 농축하여 10 L의 농축물을 얻었다. 이렇게 얻은 농축을 분획갈매기를 이용하여 동량(10 L)의 혈산을 넣어 농축과 혈산층으로 분리하였다. 혈산층(30 g)을 분리해낸 후 남은 농축에 다시 크로로포름을 넣어 농축과 크로로포름층으로 분리하였다. 크로로포름층(40 g)을 분리해낸 후 남은 농축에 다시 에틸아세테이트를 넣어 농축과 에틸아세테이트층(20 g)으로 분리한 후 각각에 대하여 항산화작용을 측정한 결과 크로로포름층이 활성이 가장 강함을 확인하였다. 활성물질을 함유하고 있는 크로로포름층을 모아 후 감압하여 농축, 건조하여 흙갈색의 유성물질을 얻었다. 실리카겔(Merck, Art 9385)에 유성물질을 흡착시킨 후 크로로포럼과 메탄올의 비율을 변화시키면서 실리카겔 컬럼크로마토그래피(컬럼 사이즈 : Ø8.5 x 22 cm)를 실시하여 총 CHCl₃ : MeOH = 5:1의 비율로 용리시킨 부분에서 활성분획 2 g을 얻었다. 이 활성분획을 다시 혈산과 에틸아세테이트의 비율을 변화시키면서
실리카겔 개림크로마토그래피 (겔럼 사이즈 Ø3.0 x 23 cm)를 실시한 후 Hexane : Ethyl acetate = 70 : 30의 비율로 용리시킨 분획에서 순수 활성물질인 화합물 2 (1 g)을 얻었다.

3-methoxy-5-(2’-propenyl)-1,2,-benzendiol : brown oil; 분자량: 180; 분자식: C_{16}H_{12}O_5; IR, UV, 1H NMR, 13C NMR, and EIMS data, consistent with literature values (Kuang, H. X. Shao, C. J.et al. and Bezabih, M. Mothagodi, S et al.).

![Chemical structure of 3-methoxy-5-(2’-propenyl)-1,2,-benzendiol and Eugenol](image)

(3-methoxy-5-(2’-propenyl)-1,2,-benzendiol)의 LDL-oxidation 활성을 저해능을 Fig. 16에 나타내었다. 3-methoxy-5-(2’-propenyl)-1,2,-benzendiol의 IC$_{50}$ 값은 7.4 μM이었으며, 농도 의존적으로 LDL-oxidation 활성을 억제하였다. 유사화합물인 Eugenol은 보다 강한 LDL-항산화 활성(IC$_{50}$ = 2.2 μM)을 나타내어, 처음으로 이 두 화합물의 LDL-항산화 활성을 밝혀냈다. 같은 조건하에서 대조군인 probucol의 IC$_{50}$ 값은 3 μ M이었다.
Fig. 16. LDL-oxidation inhibitory activities of 3-methoxy-5-(2'-propenyl)-1,2-benzadiol.
제 4 장 연구개발목표 달성도 및 대외기여도

제 1 절 연구개발 목표의 달성도

<table>
<thead>
<tr>
<th>연구 내용</th>
<th>연구개발 결과</th>
<th>달성도 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>각 장기별 프로테인 분석 및 후보 선도 물질에 의한 프로테인 변화 분석</td>
<td>- B6 mouse 및 ApoE KO mouse의 heart, liver, brain, adrenal gland, aorta, serum의 프로테인 분석</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- DHPPA 투여 후 serum의 프로테인 분석</td>
<td>100</td>
</tr>
<tr>
<td>모델동물에서의 장기별 발현 단백질 비교 분석</td>
<td>- 고지혈증 유발시 발현의 변화가 있는 단백질을 혈청 14개, 혈대동맥 14개, 심장 12개, 간 16개 및 부신 8개 총 64개를 발굴하였음</td>
<td>100</td>
</tr>
<tr>
<td>의약품보급전처리 후 표적 단백질의 발현 조절 분석</td>
<td>- DHPPA의 동맥경화 유발인자 VACM-1의 발현 억제 확인</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>- HDL 증가 및 apoA-1농도 비율 증가함</td>
<td></td>
</tr>
<tr>
<td>Native LDL에 의한 세포성장 효과 및 cytokine의 생성 기전 연구</td>
<td>- 세포 성장 관찰 시스템의 확립 및 기전 연구</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>- 생성 염증 유발인자와의 확인 및 생성 기전 연구</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Native LDL에 의하여 hVSMC의 성장 촉진되며, 새로운 타입의 염증 인자인 IL-8이 생성되는 현상 발견</td>
<td></td>
</tr>
<tr>
<td>혈관평활근세포의 분리 및 사멸체계의 확립</td>
<td>- Rat 대동맥에서 평활근세포의 분리</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>- 분리된 세포를 이용하여 TNF-alpha에 의한 사멸연구 체계 확립</td>
<td></td>
</tr>
<tr>
<td>히드록시 히드로산산의 에스테르 유도체 합성</td>
<td>- 히드록시 히드로산산의 에스테르 합성법 확립</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>- 히드록시 히드로산산의 에스테르 유도체 합성</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 합성유도체의 생체내 활성 검색</td>
<td></td>
</tr>
<tr>
<td>LDL-antioxidant의 분리</td>
<td>- Penicillium herquei sp. F2979으로부터 항산화 물질 분리</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>- 산조반나무로부터 항산화 물질 분리</td>
<td></td>
</tr>
</tbody>
</table>
제 2 절 대외 기여도

본 연구 결과는 프로테오믹스 기법을 이용하여 순환기 질환과 관련된 새로운 단백질을 발굴할 수 있는 방향을 제시함과 동시에 연구자들에 기본적인 프로테임 데이터 제공한다.

본 연구에서 발굴한 단백질은 고지혈증 치료제의 새로운 표적 단백질로의 활용성이 매우 높아 신약개발에 이용될 수 있을 것으로 생각된다.

생쥐 모델을 이용한 in vivo test에서 아포지단백질의 포로질 변화가 약리효과의 중요한 판단기준이 될 수 있음을 시사한다.

LDL에 의한 VSMC의 세포 성장 효과 및 작용기전 연구, ROS의 중요성에 대한 자료 제시 및 기존의 다른 세포에서 연구되어있는 사실을 hVSMC에서 확인하였고, 본 연구 결과는 동맥경화의 신개념을 세우는 촉매이 된다.

소량 혈액으로부터 지단백질 분리 방법의 확립, 전기영동을 이용한 지단백질의 분획화, 고콜레스테롤 식이의 진행으로 변화된 지단백질 및 아포지단백질의 포로질 변화 관찰, 후보물질의 약리효과 검정 방법의 확립을 통해 보다 실질적인 의약후보물질 검색이 가능할 것이다.

히드록시히드로신남산의 에스테르 합성법은 반응물질의 특성, 즉 알킬 알코올 혹은 알킬 알데히드와 관계없이 손쉽게 구할 수 있는 출발물질을 이용할 수 있다는 점과 대량합성이 용이하다는 점을 들 수가 있다.

천연자원으로부터 LDL 항산화 활성 선도물질의 탐색을 통해 고지혈증, 동맥경화 등 순환기질환의 신약 선도물질 도출 및 신약 개발을 위한 기초 자료를 제시하였다.
<table>
<thead>
<tr>
<th>구분</th>
<th>활용 계획</th>
</tr>
</thead>
</table>
| 기관내부 자체 활용 | 본 연구소 내에서 순환기 계통의 질환을 연구하는 분야의 연구원들에게 프로테인 분석에 관한 reference data를 제공할 수 있음
아물투여에 의한 혈장 단백질 및 아포지단백질의 프로필 변화를 쉽게 관찰할 수 있는 기반기술로 활용 |
| 과학기술계 활용 | 생쥐모델에서 고지혈증이에 의한 클레스테롤 및 지질 정분의 변화가 단백질과 아포지단백질의 조성 변화에도 영향이 있음을 증명함으로써 향후 동물실험에 활용
순환기계 질환 관련 단백질에 대한 기초 데이터를 제공하여 프로테오믹스 기법을 이용한 절환연구의 방향을 설정하는데 이용 가능함
실험동물혈청에서 단백질 프로필을 분석하는 기술은 고지혈증치료에 개발과 평가에서 필수적인 기술이므로 본 연구진이 수행하는 기타과학적 환경제에 적합 활용 가능. 분자의과학에서의 인간 질환모델에서 연계과학 수행
New Frontier 사업단인 프로테오믹스 사업단과 연계하여 새로운 질환 관련 단백질의 발굴에 활용 가능 |
| 산업계 지원 활용 | 플라보노이드 유도체의 경우 투여가 각종 지질지표 및 단백질과 아포지단백질의 조성을 개선하여 항응급화 효과가 있을음을 증명함으로써 신약개발물질로 활용
의약제품물질은 동맥경화, 고지혈증치료제 개발에 이용
순환기계질환 관련된 단백질을 약물의 표적으로 이용하여 새로운 개념의 약물개발 기초 자료로 활용이 가능함 |
| 현안기술 해결에 활용 | 동맥경화, 고지혈증 예방, 치료제 탐색에 필요한 분자세포생물학적 기반의 제공 |
| 기타 | 유명지널에 논문 게재 및 특허 출원
참여 연구원/연구생들에게 초원심분리를 통한 단백질의 분리 기술과 각종 전기영동기술(native gel, SDS-PAGE, IEF)을 습득하게 하고, 단백질 분리와 특성, 평가 기술을 합량하는데 활용
본 연구진이 확립한 단백질 및 아포지단백질의 조성과 농도 평가 기술은 관련분야에서 활용할 수 있는 동물실험을 통한 약리효과 평가방법임 |

- 56 -
제 6 장 참고문헌

(결합도물모델에서의 프로테오 분석 및 타겟 단백질 발굴)

(동물모델에서 의약후보물질의 작용점 발굴 및 Marker 단백질 발현 변화 연구)

(서포 모델 시스템을 이용한 의약후보물질의 작용점 기능 연구)

adhesion to endothelial cells does not involve NFκB. *Biochem Biophys Res Commun.* Jun 1;284(1):239-44.

(심혈관질환 의약소재물질 탐색)

7. Aggarwal, B.B.; Grunberger, D.; Burke, T.R. "Inhibition of nuclear transcription factor NF-kB by caffeic acid phenethyl ester (CAPE), derivatives of CAPE, capsaicin(8-methyl-N-vanillyl-6-nonenamide) and resiniferatoxin." *PCT Int.*

20. Carew TE, Schwenke DC, Steinberg D. Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: evidence that antioxidant in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty
streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbits. Proc Natl Acad Sci USA 1987;84:7725
