Anti-*Helicobacter pylori* Activity of Quinolone Alkaloids from Evodiae Fructus

Tae Cheol Rhö,

Eun-Ah Bae,4

Dong-Hyun Kim,

Won Keun Oh,

Bo Yeon Kim,

Jong Seog Ahn,

and Hyun Sun Lee.

Korea Research Institute of Bioscience and Biotechnology (KRIBB),* P.O. Box 115, Yusong, Taejon 305–600, Korea and College of Pharmacy, Kyung-Hee University,† 81 Heogi, Dongdaemun-Ku, Seoul 130–701, Korea.

Received April 12, 1999; accepted June 21, 1999.

A biologically monitored fractionation of methanol extract of the fruit of *Evodia rutaecarpa* led to the isolation of six quinolone alkaloids, evocarpine (1), 1-methyl-2-((4Z,7Z)-4,7-tridecadienyl)-4(1H)-quinolone (2), 1-methyl-2-((6Z,9Z)-5,9-pentadecadienyl)-4(1H)-quinolone (3), 1-methyl-2-undecyl-4(1H)-quinolone (4), dihydroevocarpine (5), 1-methyl-2-pentadecyl-4(1H)-quinolone (6). They showed potent anti-*Helicobacter pylori* activity with the minimum inhibitory concentration (MIC) value of 10–20 μg/mL. However, they had no effect on *Helicobacter pylori* urease activity at the concentration of 300 μg/mL.

Key words *Helicobacter pylori; Evodia rutaecarpa; quinolone alkaloid.

Helicobacter pylori (HP) was isolated from the gastric antrum of chronic gastritis patients by Warren and Marshall in 1983.1,2 HP promotes gastritis to gastric cancer. Pathogenic HP produces urease strongly, which hydrolyzes urea to CO₂ and ammonia. HP urease is considered to play a critical role in the pathogenesis of gastritis and peptic ulcer. Therefore, eradication of the bacteria and inhibition of the urease are important for the treatment of patients with gastroduodenal diseases.3 Current clinical therapy relies on triple therapy schedules combining bithuth salts, metronidazole or tinidazole, and tetracycline or amoxicillin. However, the attractiveness of such comprehensive regimens is clearly diminished by numerous side effects. Accordingly, there is a need for safe and effective treatment with a compound having excellent anti-HP activity.

During the screening program to discover such compounds from natural products, Evodiae fructus was found to show inhibitory activity against HP. In this paper, we report isolation of the active principle and inhibitory effect on HP growth and urease activity of quinolone alkaloids from Evodiae fructus.

MATERIALS AND METHODS

Materials Brucella agar and brucella broth were purchased from Difco Co. (U.S.A.). Horse serum was from Sigma Chem. Co. (U.S.A.). AnaeroPak Campylo was from Mitsubishi Gas Chemical Co., Inc. (Japan).1H- and 13C-NMR spectra were measured on a Varian Unity 300 NMR (1H: 300 MHz, 13C: 75 MHz). MS were obtained on a Hewlett Packard 5989A mass spectrometer. The chemical shifts were expressed as δ values in ppm from tetramethylsilane (TMS) as internal standard. TLC was carried out on Sil gel 60 F254 and RP-18 F254 plate (Merck, Darmstadt, Germany). Column chromatography was performed over Si gel 60 (Merck, particle size 70–230 mesh) and YMC*GEL ODS-A (YMC, particle size 70–230 mesh). The preparative HPLC apparatus consisted of a Shimadzu model LC-6AD pump and SPD-10A UV detector.

Plant Material The dried unripe fruits of *E. rutaecarpa* were purchased from a local herb market in Taejon, Korea in 1996. The authenticity of the plant was confirmed by D. S. Han, Emeritus Professor of Seoul National University.

Isolation of HP Growth-Inhibitory Components from Evodiae Fructus The dried, unripe fruits of *E. rutaecarpa* (5 kg) were milled and extracted 3 times with MeOH at room temperature. The MeOH extracts were concentrated to a residue under reduced pressure, which was diluted with water. This aqueous solution was extracted with BuOH. The combined BuOH extracts, upon evaporation, yielded 222 g of solid material. The crude BuOH extracts were mixed with 200 g silica gel (70–230 mesh) and then subjected to column chromatography on silica gel, eluting with hexane and a gradient of hexane–EtOAc (20:1→1:1, v/v). The elution gave 16 fractions (each of 1000 ml) and each fraction was monitored by *in vitro* anti-HP activity. Fraction 7–9 with the highest inhibitory activity were combined and evaporated to give 18.4 g of solid material. The active fractions were applied to rechromatography over RP-18 (YMC*GEL, ODS-A, 60 Å, 70/230 mesh). Elution with a step gradient of MeOH/H₂O (50% MeOH→70% MeOH→90% MeOH→100% MeOH) was divided into three active fractions, EB-1 (13.6 g), EB-2 (0.7 g), EB-3 (0.5 g). Fraction EB-1 was further purified by semi-preparative HPLC (column, J'sphere ODS-H80, 4 μm, 80 Å, i.d. 20×150 mm; MeOH–H₂O (90:10); flow rate, 8 ml/min; UV, 254 nm) to give compounds 1–4. Compounds 5 and 6 were isolated from EB-2 and EB-3 by using the same HPLC condition.

Bacterial Strains HP ATCC43504, NCTC11637 and NCTC11638 were purchased from ATCC and NCTC, respectively. Other HPs (HP82516, HP82548, HP4), clinical isolates selected from Korean gastrointestinal sample, were also used. They were inoculated into brucella agar plates supplemented with 7% horse serum and cultured for 3 d at 37°C in an anaerobic jar with AnaeroPak Campylo.

Growth Inhibition Assay of HP Growth inhibition assay of HP was performed as discussed.4 One ml of isolated compounds was added to a petri dish containing unsolidified 7 ml brucella agar supplemented with 7% horse serum. Final concentrations of each isolated compound were 100, 80, 40, 20, 10, 5, 2.5, 1, 0.5, 0.25 and 0.1 μg/ml. Approximately 5×10^5 CFU of HP was then inoculated to the agar plates and

4) 1999 Pharmaceutical Society of Japan
Table 1. MICs of Quinolone Alkaloids (1—6) Isolated from Evodiae Fructus on the Growth of Helicobacter pylori

<table>
<thead>
<tr>
<th>Compd.</th>
<th>HP ATCC43504</th>
<th>HP NCTC11637</th>
<th>HP NCTC11638</th>
<th>HP 82516</th>
<th>HP 82548</th>
<th>HP 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>AHA°</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>93</td>
</tr>
</tbody>
</table>

a) HP urease activities were tested at the concentration of 300 µg/ml. b) AHA, acetylsarcosine acid.

cultured microaerobically for 3 d at 37 °C in an anaerobic jar (85% N₂, 10% CO₂, 6% O₂). The minimum inhibitory concentration (MIC) was determined after an incubation period of 72 h. Ampicillin was used as a positive control. All experiments were conducted in duplicate.

Preparation and Assay of HP Urease. HP was inoculated from an agar plate into 30 ml of brucella broth supplemented with 10% fetal bovine serum in a 100 ml flask, which was placed in an anaerobic jar. The harvested cells were washed with 10 ml of 20 mM phosphate buffer, pH 7.0, sonicated and centrifuged at 5000×g for 30 min. The resulting supernatant was used as the crude enzyme; its specific activity was 0.5 unit/mg protein. Urease activity was determined according to the method of Gutmann and Bergmeyer.

RESULTS AND DISCUSSION

The BuOH extract of E. rutacear (Rutaceae) was found to exhibit potent antibacterial activity against HP. Using an in vitro anti-HP activity test to guide isolation, the BuOH extract of E. rutacear was fractionated by a series of normal and reverse phase column and semi-preparative HPLC chromatographic procedures to yield six quinoline compounds, evocarpine (1), 1-methyl-2-[(42,72)-4,7-tridecadienyl]-4(1H)-quinoline (2), 1-methyl-2-(62,92,69-pentadecadienyl)-4(1H)-quinoline (3), 1-methyl-2-undecyl-4(1H)-quinoline (4), dihydroevocarpine (5), and 1-methyl-2-pentadecyl-4(1H)-quinoline (6) (Fig. 1). These compounds gave a red-brown spot with Dragendorff's reagents on TLC and were identified as quinoline type alkaloid on the basis of their physicochemical properties and spectral data in comparison with those of published values.

Table 1 shows the effect of six quinoline alkaloids (1—6) on the growth of HP and HP-urease activity. The MIC ranges for these compounds proved to be 10 to 20 µg/ml on the growth of HP, but had no effect on HP-urease activity at the concentration of 300 µg/ml. Ampicillin, which is clinically used for the eradication of HP, was used as positive control and exhibited an inhibitory effect (MIC value; 0.5—2 µg/ml) to HP growth.

In recent years, several other agents from natural products have been shown to exhibit anti-HP activity. Decursin and decursinol angelate with potent MIC value of 6—20 µg/ml were isolated from Angelica gigas. Protolicheteric acid (Lichen Cladaria islandica), magnolol (Magnolia officinalis), capsaicin, thiosulfinate and berberine (Coptis japonica) have been reported as inhibitors of HP growth. Recently, an inhibitor called CI-13,564 with very potent anti-HP activity (MIC value of 0.1 µg/ml) was isolated from the actinomycetes Pseudonocardia sp. This compound has quinolone skeleton and structurally close relation to active compounds (1—6) isolated from E. rutacear.

Evodiae fructus is a Chinese herbal drug which has antiametic, analgesic, uterotonic, antiinflammatory, and antibacterial activity. The quinoline alkaloids (1—6) discussed above have recently been isolated from fruits of E. rutacear and are potent inhibitors of HP growth. It is suggested that the traditional uses of Evodiae fructus for abdominal pain, vomit and diarrhea would be due in part to inhibitory activity of this quinolone alkaloids.

REFERENCES