상세 정보

underline
Metadata Downloads : dc(xml) or Excel
Cited 0 time in scopus ci

Title 

Gene expression signature-based prognostic risk score in gastric cancer

Authors 

J Y ChoJ Y LimJ H CheongY Y ParkS L YoonS M KimS B KimH KimS W HongY N ParkS H NohE S ParkIn-Sun ChuW K HongJ A AjaniJ S Lee

Publisher 

American Association for Cancer Research

Issue Date 

2011

Citation 

Clinical Cancer Research, vol. 17, no. 7, pp. 1850-1857

Abstract 

Purpose: Despite continual efforts to develop a prognostic model of gastric cancer by using clinical and pathologic parameters, a clinical test that can discriminate patients with good outcomes from those with poor outcomes after gastric cancer surgery has not been established. We aim to develop practical biomarker-based risk score that can predict relapse of gastric cancer after surgical treatment. Experimental Design: Microarray technologies were used to generate and analyze gene expression profiling data from 65 gastric cancer patients to identify biomarker genes associated with relapse. The association of expression patterns of identified genes with relapse and overall survival was validated in independent gastric cancer patients. Results: We uncovered two subgroups of gastric cancer that were strongly associated with the prognosis. For the easy translation of our findings into practice, we developed a scoring system based on the expression of six genes that predicted the likelihood of relapse after curative resection. In multivariate analysis, the risk score was an independent predictor of relapse in a cohort of 96 patients. We were able to validate the robustness of the six-gene signature in an additional independent cohort. Conclusions: The risk score derived from the six-gene set successfully prognosticated the relapse of gastric cancer patients after gastrectomy.

ISSN 

1078-0432

Link 

http://dx.doi.org/10.1158/1078-0432.CCR-10-2180

Appears in Collections

1. Journal Articles > Journal Articles

Registered Date

2019-05-02


There are no files associated with this item.
qrcode

FusionCharts.
DSpace Software Coptright(c) 2010 MIT and Hewleft-Packard  /  KRIBB-REPOSITORY ( Email:jakim@kribb.re.kr)