상세 정보

underline
Metadata Downloads : dc(xml) or Excel
Cited 0 time in scopus ci

Title 

Bio-derived poly(γ-Glutamic acid) nanogels as controlled anticancer drug delivery carriers

Authors 

H H BaeM Y ChoJ H HongHaryoung PooM H SungY T Lim

Publisher 

The Korean Society for Applied Microbiology

Issue Date 

2012

Citation 

Journal of Microbiology and Biotechnology, vol. 22, no. 12, pp. 1782-1789

Keywords 

Anticancer drugsDrug deliveryPoly(γ-glutamic acid)Polymer nanogel

Abstract 

We have developed a novel type of polymer nanogel loaded with anticancer drug based on bio-derived poly(γ- glutamic acid) (γ-PGA). γ-PGA is a highly anionic polymer that is synthesized naturally by microbial species, most prominently in various bacilli, and has been shown to have excellent biocompatibility. Thiolated γ-PGA was synthesized by covalent coupling between the carboxyl groups of γ-PGA and the primary amine group of cysteamine. Doxorubicin (Dox)-loaded γ-PGA nanogels were fabricated using the following steps: (1) an ionic nanocomplex was formed between thiolated γ-PGA as the negative charge component, and Dox as the positive charge component; (2) addition of poly(ethylene glycol) (PEG) induced hydrogen-bond interactions between thiol groups of thiolated γ-PGA and hydroxyl groups of PEG, resulting in the nanocomplex; and (3) disulfide crosslinked γ-PGA nanogels were fabricated by ultrasonication. The average size and surface charge of Dox-loaded disulfide cross-linked γ-PGA nanogels in aqueous solution were 136.3 ± 37.6 nm and -32.5 ± 5.3 mV, respectively. The loading amount of Dox was approximately 38.7 μg per mg of γ-PGA nanogel. The Dox-loaded disulfide cross-linked γ-PGA nanogels showed controlled drug release behavior in the presence of reducing agents, glutathione (GSH) (1- 10 mM). Through fluorescence microscopy and FACS, the cellular uptake of γ-PGA nanogels into breast cancer cells (MCF-7) was analyzed. The cytotoxic effect was evaluated using the MTT assay and was determined to be dependent on both the concentration and treatment time of γ-PGA nanogels. The bio-derived γ-PGA nanogels are expected to be a well-designed delivery carrier for controlled drug delivery applications.

ISSN 

1017-7825

Link 

http://dx.doi.org/10.4014/jmb.1208.08031

Appears in Collections

1. Journal Articles > Journal Articles

Registered Date

2017-04-19


There are no files associated with this item.
qrcode

FusionCharts.
DSpace Software Coptright(c) 2010 MIT and Hewleft-Packard  /  KRIBB-REPOSITORY ( Email:jakim@kribb.re.kr)