상세 정보

underline
Metadata Downloads : dc(xml) or Excel
Cited 0 time in scopus ci

Title 

TRIM11 negatively regulates IFNβ production and antiviral activity by targeting TBK1

Authors 

Younglang LeeB SongC ParkKi Sun Kwon

Publisher 

Public Library of Science

Issue Date 

2013

Citation 

Plos One, vol. 8, no. 5, pp. e63255-e63255

Abstract 

The innate immune response is a host defense mechanism against infection by viruses and bacteria. Type I interferons (IFNα/β) play a crucial role in innate immunity. If not tightly regulated under normal conditions and during immune responses, IFN production can become aberrant, leading to inflammatory and autoimmune diseases. In this study, we identified TRIM11 (tripartite motif containing 11) as a novel negative regulator of IFNβ production. Ectopic expression of TRIM11 decreased IFNβ promoter activity induced by poly (I:C) stimulation or overexpression of RIG-I (retinoic acid-inducible gene-I) signaling cascade components RIG-IN (constitutively active form of RIG-I), MAVS (mitochondrial antiviral signaling protein), or TBK1 (TANK-binding kinase-1). Conversely, TRIM11 knockdown enhanced IFNβ promoter activity induced by these stimuli. Moreover, TRIM11 overexpression inhibited the phosphorylation and dimerization of IRF3 and expression of IFNβ mRNA. By contrast, TRIM11 knockdown increased the IRF3 phosphorylation and IFNβ mRNA expression. We also found that TRIM11 and TBK1, a key kinase that phosphorylates IRF3 in the RIG-I pathway, interacted with each other through CC and CC2 domain, respectively. This interaction was enhanced in the presence of the TBK1 adaptor proteins, NAP1 (NF-κB activating kinase-associated protein-1), SINTBAD (similar to NAP1 TBK1 adaptor) or TANK (TRAF family member-associated NF-κB activator). Consistent with its inhibitory role in RIG-I-mediated IFNβ signaling, TRIM11 overexpression enhanced viral infectivity, whereas TRIM11 knockdown produced the opposite effect. Collectively, our results suggest that TRIM11 inhibits RIG-I-mediated IFNβ production by targeting the TBK1 signaling complex.

ISSN 

1932-6203

Link 

http://dx.doi.org/10.1371/journal.pone.0063255

Appears in Collections

1. Journal Articles > Journal Articles

Registered Date

2017-04-19


Files in This Item: SizeFormat
11595.pdf7626KbAdobe PDF
qrcode

FusionCharts.
DSpace Software Coptright(c) 2010 MIT and Hewleft-Packard  /  KRIBB-REPOSITORY ( Email:jakim@kribb.re.kr)