상세 정보

underline
Metadata Downloads : dc(xml) or Excel
Cited 0 time in scopus ci

Title 

Comparative receptor tyrosine kinase profiling identifies a novel role for AXL in human stem cell pluripotency

Authors 

Mi Young SonBinna SeolY M HanYee Sook Cho

Publisher 

Oxford University Press (OUP)

Issue Date 

2014

Citation 

Human Molecular Genetics, vol. 23, no. 7, pp. 1802-1816

Abstract 

The extensive molecular characterization of human pluripotent stem cells (hPSCs), human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) is required before they can be applied in the future for personalized medicine and drug discovery. Despite the efforts that have been made with kinome analyses, we still lack in-depth insights into the molecular signatures of receptor tyrosine kinases (RTKs) that are related to pluripotency. Here, we present the first detailed and distinct repertoire of RTK characteristic for hPSC pluripotency by determining both the expression and phosphorylation profiles of RTKs in hESCs and hiPSCs using reverse transcriptase-polymerase chain reaction with degenerate primers that target conserved tyrosine kinase domains and phospho-RTK array, respectively. Among the RTKs tested, the up-regulation of EPHA1, ERBB2, FGFR4 and VEGFR2 and the down-regulation of AXL, EPHA4, PDGFRB and TYRO3 in terms of both their expression and phosphorylation levels were predominantly related to the maintenance of hPSC pluripotency. Notably, the specific inhibition of AXL was significantly advantageous in maintaining undifferentiated hESCs and hiPSCs and for the overall efficiency and kinetics of hiPSC generation. Additionally, a global phosphoproteomic analysis showed that ∼30% of the proteins (293 of 970 phosphoproteins) showed differential phosphorylation upon AXL inhibition in undifferentiated hPSCs, revealing the potential contribution of AXL-mediated phosphorylation dynamics to pluripotency-related signaling networks. Our findings provide a novel molecular signature of AXL in pluripotency control that will complement existing pluripotency-kinome networks.

ISSN 

0964-6906

Link 

http://dx.doi.org/10.1093/hmg/ddt571

Appears in Collections

1. Journal Articles > Journal Articles

Registered Date

2017-04-19


There are no files associated with this item.
qrcode

FusionCharts.
DSpace Software Coptright(c) 2010 MIT and Hewleft-Packard  /  KRIBB-REPOSITORY ( Email:jakim@kribb.re.kr)