상세 정보

underline
Metadata Downloads : dc(xml) or Excel
Cited 0 time in scopus ci

Title 

Optimised hydrodynamic parameters for the design of photobioreactors using computational fluid dynamics and experimental validation

Authors 

J P P BitogI B LeeHee-Mock OhS W HongI H SeoK S Kwon

Publisher 

Elsevier

Issue Date 

2014

Citation 

Biosystems Engineering, vol. 122, no. 0, pp. 42-61

Keywords 

Algae biomass concentrationCirculation timeComputational fluid dynamics (CFD)Dead zonesParticle image velocimetry (PIV)Turbulence intensity

Abstract 

A numerical simulation using computational fluid dynamics (CFD) was utilised to investigate the flow hydrodynamics of cylindrical bubble column type photobioreactors (PBRs) with a 30. l culture medium. To establish the reliability of the simulation study, the CFD model was validated using particle image velocimetry (PIV) computed data under various air flow rates. There were 32 simulation cases for the study comprising two PBR designs, four air flow rates and four nozzle size diameters. Hydrodynamic analyses such as % volume of dead zones, average circulation time and turbulence intensity inside the simulated PBRs were evaluated. Results have shown that the most appropriate PBR for microalgae cultivation was a design with internal baffle and an extended cone-shaped bottom section. In addition, the recommended nozzle diameter was found to be 10mm and a minimum air flow rate of 0.10vvm. To eliminate dead zones inside the PBR, the flow rate can be slightly increased but should not exceed 0.15vvm. Practical evaluation through laboratory experiments has further confirmed the results of the study where the biomass concentration of Chlorella vulgaris from the proposed PBR was significantly higher compared to the standard PBR design. Based on the numerical investigation and practical evaluation, the improved PBR can be seen to be more effective in culturing microalgae particularly for larger scale mass production.

ISSN 

1537-5110

Link 

http://dx.doi.org/10.1016/j.biosystemseng.2014.03.006

Appears in Collections

1. Journal Articles > Journal Articles

Registered Date

2019-05-02


There are no files associated with this item.
qrcode

FusionCharts.
DSpace Software Coptright(c) 2010 MIT and Hewleft-Packard  /  KRIBB-REPOSITORY ( Email:jakim@kribb.re.kr)