상세 정보

underline
Metadata Downloads : dc(xml) or Excel
Cited 0 time in scopus ci

Title 

Copper nanoparticles induce early fibrotic changes in the liver via TGF-β/Smad signaling and cause immunosuppressive effects in rats

Authors 

In Chul LeeJ W KoS H ParkN R ShinI S ShinC MoonS H KimWoon Kee YoonHyoung-Chin KimJ C Kim

Publisher 

Informa Healthcare

Issue Date 

2018

Citation 

Nanotoxicology

Keywords 

Copper nanoparticlesextracellular matriximmune responseoxidative stresstransforming growth factor-β1

Abstract 

Copper nanoparticles (Cu NPs) have various uses, including as additives in polymers/plastics, lubricants for metallic coating, and biomedical applications. We investigated the role of transforming growth factor (TGF)-β1 signaling in hepatic damage caused by Cu NPs and explored the effects of a 28-day repeated oral administration to Cu NPs on the immune response. The exposure to Cu NPs caused a dose-dependent increase in Cu levels in the liver and spleen. Cu NPs caused hepatic damage and markedly increased oxidative stress in liver tissues. Cu NPs induced activation of TGF-β1/Smad signaling by induction of vascular endothelial growth factor and matrix metalloproteinase-9. Exposure to Cu NPs also induced activation of Smad-independent pathways, phosphorylation of mitogen-activated protein kinases (MAPKs) and Akt/FoxO3. Consistent with the activation of TGF-β1/Smad-dependent and -independent pathways, Cu NPs markedly increased the deposition and induction of extracellular matrix components, α-smooth muscle actin, and collagens in liver tissues. In addition, repeated exposure to Cu NPs suppressed the proliferation of mitogenically stimulated T- or B-lymphocytes and decreased CD3+ (particularly, CD3+CD4+CD8-) and CD45+ population, followed by decreased levels of immunoglobulins and Th1/Th2 type cytokines. Collectively, Cu NPs caused hepatic damage and induced pro-fibrotic changes, which were closely related to the activation of oxidative stress-mediated TGF-β1/Smad-dependent and -independent pathways (MAPKs and Akt/FoxO3). We confirmed the immunosuppressive effect of Cu NPs via the inhibition of mitogen-stimulated spleen-derived lymphocyte proliferation and suppression of B- or T-lymphocyte-mediated immune responses.

ISSN 

1743-5390

Link 

http://dx.doi.org/10.1080/17435390.2018.1472313

Appears in Collections

1. Journal Articles > Journal Articles

Registered Date

2019-05-02


There are no files associated with this item.
qrcode

FusionCharts.
DSpace Software Coptright(c) 2010 MIT and Hewleft-Packard  /  KRIBB-REPOSITORY ( Email:jakim@kribb.re.kr)