상세 정보

underline
Metadata Downloads : dc(xml) or Excel
Cited 0 time in scopus ci

Title 

The effects of kinase modulation on in vitro maturation according to different cumulus-oocyte complex morphologies

Authors 

Bong-Seok SongPil Soo JeongJong Hee LeeMoon-Hyung LeeHae Jun YangSeon A ChoiHwal Yong LeeSeung-Bin YoonYoung-Ho ParkKang Jin JeongYoung-Hyun KimYeung Bae JinJi-Su KimBo Woong SimJae Won HuhSang-Rae LeeD B KooKyu Tae ChangSun-Uk Kim

Publisher 

Public Library of Science

Issue Date 

2018

Citation 

Plos One

Abstract 

Successful production of transgenic pigs requires oocytes with a high developmental competence. However, cumulus-oocyte complexes (COCs) obtained from antral follicles have a heterogeneous morphology. COCs can be classified into one of two classes: class I, with five or more layers of cumulus cells; and class II, with one or two layers of cumulus cells. Activator [e.g., epidermal growth factor (EGF)] or inhibitors (e.g., wortmannin and U0126) are added to modulate kinases in oocytes during meiosis. In the present study, we investigated the effects of kinase modulation on nuclear and cytoplasmic maturation in COCs. Class I COCs showed a significantly higher developmental competence than class II COCs. Moreover, the expression of two kinases, AKT and ERK, differed between class I and class II COCs during in vitro maturation (IVM). Initially, inhibition of the PI3K/AKT signaling pathway in class I COCs during early IVM (0-22 h) decreased developmental parameters, such as blastocyst formation rate, blastomere number, and cell survival. Conversely, EGF-mediated AKT activation in class II COCs enhanced developmental capacity. Regarding the MAPK signaling pathway, inhibition of ERK by U0126 in class II COCs during early IVM impaired developmental competence. However, transient treatment with U0126 in class II COCs increased oocyte maturation and AKT activity, improving embryonic development. Additionally, western blotting showed that inhibition of ERK activity negatively regulated the AKT signaling pathway, indicative of a relationship between AKT and MAPK signaling in the process underlying meiotic progression in pigs. These findings may help increase the developmental competence and utilization rate of pig COCs with regard to the production of transgenic pigs and improve our understanding of kinase-associated meiosis events.

ISSN 

1932-6203

Link 

http://dx.doi.org/10.1371/journal.pone.0205495

Appears in Collections

1. Journal Articles > Journal Articles

Registered Date

2019-05-02


There are no files associated with this item.
qrcode

FusionCharts.
DSpace Software Coptright(c) 2010 MIT and Hewleft-Packard  /  KRIBB-REPOSITORY ( Email:jakim@kribb.re.kr)