상세 정보

underline
Metadata Downloads : dc(xml) or Excel
Cited 0 time in scopus ci

Title 

Viability of Lactobacillus plantarum encapsulated with poly-γ-glutamic acid produced by Bacillus sp. SJ-10 during freeze-drying and in an in vitro gastrointestinal model

Authors 

W J JangS Y ChoiJong Min LeeG H LeeM T HasanI S Kong

Publisher 

Elsevier

Issue Date 

2019

Citation 

LWT - Food Science and Technology

Keywords 

Lactic acid bacteriaProbioticEncapsulationPoly-γ-glutamic acidViability

Abstract 

In the present study, the probiotic Lactobacillus plantarum was encapsulated with 0.1%, 0.25%, or 0.5% 400-kDa poly-γ-glutamic acid (γ-PGA400) produced by Bacillus sp. SJ-10. The viability of the encapsulated cells was assessed under various stress conditions that are common to the processing and ingestion of probiotics, such as freeze-drying, exposure to simulated gastric juice (SGJ), and exposure to bile salt. During freeze-drying to make powder, L. plantarum levels decreased by 1.50 log colony forming units (CFU)/ml without encapsulation. When encapsulated with 0.5% γ-PGA400 under the same conditions, L. plantarum levels decreased by 0.19 log CFU/ml. In the SGJ condition (pH 2), all L. plantarum bacteria died within 1 h without encapsulation but exhibited the highest viability (decrease of 0.30 log CFU/ml) when encapsulated with 0.5% γ-PGA400. All groups had a high survival rate in the bile salt condition (pH 5.9). In the intestinal adhesion test with Caco-2 cells, the highest rate of adherence was 35.9% when the cells were encapsulated with 0.25% γ-PGA400. The present findings suggest that γ-PGA400 as an encapsulating material increases the viability of L. plantarum under various stress conditions.

URI 

https://doi.org/10.1016/j.lwt.2019.05.120

ISSN 

0023-6438

Appears in Collections

1. Journal Articles > Journal Articles

Registered Date

2019-07-10


There are no files associated with this item.
qrcode

FusionCharts.
DSpace Software Coptright(c) 2010 MIT and Hewleft-Packard  /  KRIBB-REPOSITORY ( Email:jakim@kribb.re.kr)