상세 정보

underline
Metadata Downloads : dc(xml) or Excel
Cited 0 time in scopus ci

Title 

KR-31378 ameliorates atherosclerosis by blocking monocyte recruitment in hypercholestrolemic mice

Authors 

Ji Yun KimKi Hoan namS O KimJae Hoon ChoiHyoung-Chin KimS D YangJoo Hyoung KangYoung Han RyuGoo Taeg OhS E Yoo

Publisher 

Federation of American Society of Experimental Biology (FASEB)

Issue Date 

2004

Citation 

FASEB Journal, vol. 18, no. 6, pp. 714-716

Keywords 

monocytemousemouse mutantmicemice, knockoutmonocytes

Abstract 

The recruitment of monocytes into the artery wall is a crucial early step in atherogenesis. A novel compound, KR-31378, has been shown to be a neuroprotective agent for ischemia-reperfusion damage in rat brain via its potent antioxidant and antiapoptotic actions. Here, we report the effects of this compound on atherogenesis and possible mechanisms of action. In Ldlr knockout mice fed with a high-fat, high-cholesterol diet, treatment with KR-31378 significantly inhibited fatty streak formation and macrophage accumulation. To address the possibility that KR-31378 may influence the initial stages of atherogenesis, we examined its effect on the adhesion and migration of monocytes to endothelial cells stimulated with tumor necrosis factor-alpha. KR-31378 decreased the adhesion in a dose-dependent manner. The observed decreases in cell adhesion and migration correlated with KR-31378-mediated down-regulation of vascular cell adhesion molecule-1 (VCAM-1) and interleukin (IL)-8. Nuclear factor-kappaB (NF-kappaB) is known to regulate the expression of adhesive and chemotactic molecules including VCAM-1 and IL-8. Indeed, transient transfection experiments, electrophoretic mobility shift assay, and IkappaB degradation assay showed that KR-31378 decreased NF-kappaB activation. These results indicate that KR-31378 potently reduces fatty streak formation by inhibiting NF-kappaB-dependent cellular adhesion and chemotactic molecule expression, which are crucial to monocyte infiltration into the arterial wall during the early stages of atherogenesis.

ISSN 

0892-6638

Link 

http://dx.doi.org/10.1055/s-2004-815545

Appears in Collections

1. Journal Articles > Journal Articles

Registered Date

2019-05-02


There are no files associated with this item.
qrcode

FusionCharts.
DSpace Software Coptright(c) 2010 MIT and Hewleft-Packard  /  KRIBB-REPOSITORY ( Email:jakim@kribb.re.kr)