상세 정보

underline
Metadata Downloads : dc(xml) or Excel
Cited 0 time in scopus ci

Title 

Evaluation of a silica-coated magnetic nanoparticle for the immobilization of a His-tagged lipase

 

실리카가 코팅된 자성나노입자에 히스티딘이 태그된 리파제의 고정화

Authors 

H KimH S KwonJungoh AhnC H LeeI S Ahn

Publisher 

Informa Healthcare

Issue Date 

2009

Citation 

Biocatalysis and Biotransformation, vol. 27, no. 4, pp. 246-253

Keywords 

Enzyme immobilizationHis-tagged lipaseMagnetic nanoparticlesMetal affinitySilica coating

Abstract 

Magnetic particles of size 10 nm have been coated with silica to a mean diameter of 40 nm and charged with Cu2+ ions via a multidentate ligand, iminodiacetic acid (IDA), for the immobilization of His-tagged Bacillus stearothermopilus L1 lipase. Microporous (average pore diameter of 60 A) silica gel with a mean particle diameter of 115 μm has been used as a comparative support material. The molar ratio of Cu2+ to IDA was found to be 1:1.14 and 1:1.99 in the silica gel and the silica-coated magnetic nanoparticles (SiMNs), respectively. The specific activity of the immobilized enzyme was found to conform to the following order: Cu2+-charged SiMN>SiMNsilica gel. When it was immobilized on the Cu2+-charged SiMNs, over 70% of the initial activity of the lipase remained after it had been reused five times. However, only 20% of the initial activity remained after the enzyme immobilized on the Cu2+-charged silica gel had been reused five times. For the enzyme immobilized on supports without Cu2+ cations, all activity was lost after threefold reuse. The differences in the specific activities and the efficiencies of reuse of the enzymes immobilized on the various support materials are discussed in terms of immobilization mechanisms (physical adsorption vs. coordination bonding), mass transfer of a substrate and a product of the enzyme reaction, and the status of the Cu (Cu bound to the IDA on the silica layer vs. Cu directly adsorbed on the silica layer).

ISSN 

1024-2422

Link 

http://dx.doi.org/10.1080/10242420903042627

Appears in Collections

1. Journal Articles > Journal Articles

Registered Date

2019-05-02


There are no files associated with this item.
qrcode

FusionCharts.
DSpace Software Coptright(c) 2010 MIT and Hewleft-Packard  /  KRIBB-REPOSITORY ( Email:jakim@kribb.re.kr)