상세 정보

underline
Metadata Downloads : dc(xml) or Excel
Cited 0 time in scopus ci

Title 

Size-dependent tissue kinetics of PEG-coated gold nanoparticles

Authors 

W S ChoM ChoJ JeongM ChoiB S HanH S ShinJ HongBong Hyun ChungM H Cho

Publisher 

Elsevier

Issue Date 

2010

Citation 

Toxicology and Applied Pharmacology, vol. 245, no. 1, pp. 116-123

Keywords 

Gold nanoparticlesMetabolismMouseSize-dependent kinetics

Abstract 

Gold nanoparticles (AuNPs) can be used in various biomedical applications, however, very little is known about their size-dependent in vivo kinetics. Here, we performed a kinetic study in mice with different sizes of PEG-coated AuNPs. Small AuNPs (4 or 13. nm) showed high levels in blood for 24. h and were cleared by 7. days, whereas large (100. nm) AuNPs were completely cleared by 24. h. All AuNPs in blood re-increased at 3. months, which correlated with organ levels. Levels of small AuNPs were peaked at 7. days in the liver and spleen and at 1. month in the mesenteric lymph node, and remained high until 6. months, with slow elimination. In contrast, large AuNPs were taken up rapidly (~. 30. min) into the liver, spleen, and mesenteric lymph nodes with less elimination phase. TEM showed that AuNPs were entrapped in cytoplasmic vesicles and lysosomes of Kupffer cells and macrophages of spleen and mesenteric lymph node. Small AuNPs transiently activated CYP1A1 and 2B, phase I metabolic enzymes, in liver tissues from 24. h to 7. days, which mirrored with elevated gold levels in the liver. Large AuNPs did not affect the metabolic enzymes. Thus, propensity to accumulate in the reticuloendothelial organs and activation of phase I metabolic enzymes, suggest that extensive further studies are needed for practical in vivo applications.

ISSN 

0041-008X

Link 

http://dx.doi.org/10.1016/j.taap.2010.02.013

Appears in Collections

1. Journal Articles > Journal Articles

Registered Date

2017-04-19


There are no files associated with this item.
qrcode

FusionCharts.
DSpace Software Coptright(c) 2010 MIT and Hewleft-Packard  /  KRIBB-REPOSITORY ( Email:jakim@kribb.re.kr)